论文部分内容阅读
针对目前的字典学习方法对不同摄像机视角行人特征的联系考虑不足的问题,提出了一种新的基于字典学习和Fisher判别稀疏表示的行人重识别方法.该方法考虑不同场景中同一行人的特征应该具有相似的稀疏表示,提出行人重识别离散度函数的概念,加入约束稀疏表示的正则化项,最大化不同行人稀疏表示的类间离散度,同时最小化同一行人稀疏表示的类内离散度,通过学习到的字典得到具较强区分识别能力的稀疏表示.在公开数据集VIPeR、PRID 450s和CAVIAR4REID上的实验表明,文中方法的识别率高于目前基于字典学习的行人