论文部分内容阅读
在高光谱遥感图像中,地物的空间分布往往呈现两种特征:一是都有各自的主导区域;二是在地表空间上分布连续.利用这两种先验信息,分别引入了对丰度的正交约束与平滑约束,提出了一种基于丰度约束的非负矩阵分解算法.为进一步地提高算法的性能,另外还提出了一种新的算法停止准则及权重因子调整策略,以适应信噪比以及像元混合程度的变化.在仿真数据和实测数据上的实验结果表明,该算法不仅能很好地表征地物的分布特征,提高解混精度,而且在信噪比较低,无纯像元的条件下,仍然能得到较好的解混结果.