论文部分内容阅读
传统的遗传流行病学和基因定位的研究设计往往局限于单一的 (通常是简单的 )数据结构和过分简化的流行病学模型 .然而 ,当实际情况稍微复杂一些的时候 ,这些简单的方法几乎注定要失败 .因此 ,我们应该重新建构思维方式 ,应考虑何种的病因学模型会与我们所知道的进化、表现型的表达以及基因型 -表现型的相互关系相符 .当基因定位的策略充分利用选择偏倚来使P (基因型 |表现型的 ;选择偏倚 )的预测值达到最大 ,用分离分析试图对外显率函数或P(表现型 |基因型 )作无偏估计 .因而一般而言 ,没有一个值可以完全充分地被另一个值所推估 .一个常见的、关于基因组计划得以“改变世界”的误解甚至使得严谨的科学家们都忽略了以下的科学事实 :他们努力地为基因定位策略上的巨额支出辩护 ,却忽略了基因定位策略的本身就是极度取决于一些难以验证的前题假设 .将不同实验设计方案的数据合并起来定会使估计参数和检验假设的自由度增加 ,虽然仍然需要大样本数的资料库 ,但采取以上策略可提供更多的信息以检测出真实情况 .以往传统的研究方法只针对病因变异量的某一特定方面 :双生子法侧重于研究在一个家庭内分享共同的环境因素之下遗传因素的作用 ;寄养子研究侧重于在控制遗传因素之下 ,不同家庭环境间的变异性 ;移民流
Traditional genetic epidemiology and gene mapping research designs tend to be confined to single (usually simple) data structures and over-simplified epidemiological models, however, these simple methods almost Is doomed to failure.Therefore, we should reconstruct the way of thinking, we should consider what kind of etiology model and we know the evolution, phenotype expression and genotype-phenotype correlation.When the gene mapping strategy is sufficient Using selection bias to maximize the predictive value of P (genotype phenotype; selection bias), a separate analysis is attempted to make an unbiased estimation of the penetrance function or P (phenotype genotype) Thus, in general, No single value can be fully estimated by another value.A common misconception that genomics plans to “change the world” has even left serious scientists ignoring the scientific fact that they are struggling with the strategy of locating genes On the huge expenditure of defense, but ignored the gene positioning strategy itself is extremely dependent on some difficult to verify The hypothesis that merging data from different experimental designs will increase the freedom to estimate parameters and test hypotheses, although a larger sample size database is still required, the above strategy may provide more information to detect the real situation Traditionally, research has focused on one particular aspect of etiological variables: the twins approach focuses on the role of genetic factors in sharing common environmental factors within a single family; the study of foster children focuses on controlling genetic factors Variability among different family settings; immigration flows