论文部分内容阅读
传统推荐方法存在数据稀疏和特征识别差等问题,为了解决这些问题,根据隐式反馈构建具有时序性的正负反馈数据集。由于正负反馈数据集和商品购买具有强时序性特征,引入长短期记忆(LSTM)网络作为模型构件。考虑用户自身特征和用户动作选择回报由不同的输入数据决定,对竞争架构的深度Q网络进行改进,融合用户正负反馈和商品购买时序性,设计了基于改进的深度Q网络结构的商品推荐模型。模型对正负反馈数据进行区分性训练,对商品购买的时序性特征进行提取。在Retailrocket数据集上,与因子分解机(FM)模型、W&D模型和