论文部分内容阅读
本文提出了一种结合模糊逻辑的灰狼优化算法.本文利用模糊逻辑对灰狼算法的收敛性和多样性进行改进,在狼群迭代过程中加入对多样性度量和误差度量的性能考量,设计了可实现参数动态自适应的模糊规则,从而使算法能够在寻优过程中实时调整收敛速度并提高求解精度.首先,利用30、64和128维度的基准数学函数表明该方法的可行性,然后引用假设检验表明方法的有效性,最后将其应用于柔性外骨骼机器人姿态数据的聚类分析.实验结果表明,在分析的基准函数上,该方法比原始灰狼算法以及其它模糊灰狼算法的性能更好,在姿态数据的聚类上,基于该方法的K-means算法在聚类性能上得到很大提升.