SIMULATION AND PREDICTION OF DEBRIS FLOW USING ARTIFICIAL NEURAL NETWORK

来源 :Chinese Geographical Science | 被引量 : 0次 | 上传用户:lidcc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural hazard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting debris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and useful in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time series of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collected in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed. Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural hazards, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting debris flows have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and useful in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time series of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collected in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, howeve r, further studies are needed.
其他文献
ODP2 0 6航次将是第一个多航次的计划 ,其目的是揭示上洋壳的完整剖面 ,这其中包括火山喷出岩、席状岩墙、辉长岩 ,以及这些岩石类型之间重要的地质过渡带。 2 0 6航次计划在东
秘书写作实践教学的任务设定、小组划分、组长选定、组长培训、小组合作、任务考核和分数激励等环节,运用科学管理的方法,可以实现教学方法转型和教学过程优化,达到有效教学
第 1期数字工程建设与空间信息产业化宁津生等 ( 1)…………………现实空间、思维空间、虚拟空间边馥苓等 ( 4 )……………………一个物流配送优化算法李清泉等 ( 9)…………
水力发电学报于1982年3月第一期创刊起,作为季刊,至今已出版35期,登载学术论文约318篇,涉及水能规划、动能经济、水电站及梯级水库优化调度、水工建筑物及其抗震、混凝土坝和
【关键词】绿色化学理念;职业院校;化学教学;渗透  绿色化学是一门从源头上阻止污染的学科,是降低或消除化学产品制造、设计和应用中各种有害物质的产生或使用,使其对环境产生的污染大大降低。绿色化学得以实现要依靠特定的化学方法和技术。绿色化学的实施要从环境保护、经济效益和科学技术三个方面来入手,它对化学家研究和设计化学产品和化学过程提出了很高要求,使化学家在开展化学活动时对环境的副作用加以控制,把其对环
思维,究竟是如何产生的?现在人们普遍认为,它来自大脑。然而,古代的人却有不同的看法,他们认为思维除与大脑有关外,还与心密不可分。早在两千年前的战国时代,思想家孟子就说
计算机科学的课程不但有较强的理论性,也有较强的实践性,理论和实践是紧密相关、相辅相成,理论指导实践,实践加强对理论的理解,特别是以职业教育为主的大专院校,计算机课程的
矿井通风现场管理工作中,经常遇到大量计算问题。如果有一个可编程序的袖珍电算器,很多计算问题就可以及时地在现场得到结果,大大有利于日常的通风管理工作. CASIO fx—180P
钻进速度愈快,工作愈安全,费用就愈节省,听起来是令人感兴趣的,这些优点对于巷道掘进承包商代因特克(Dynatec)采矿有限公司来说,就是利润、礼品和潜在的力量。因为该公司使
1984年3月27—29日冶金工业部和中国有色金属工业总公司在首都钢铁公司矿山公司联合召开鉴定会,对YF型圆锥水力分级机进行技术鉴定。该分级机是由北京矿冶研究总院和首钢矿