论文部分内容阅读
图像在采集过程中会因为机械设备、天气状况等原因产生曝光不均等问题,使得图像的拍摄效果不佳,无法满足实际应用的需求。而传统的Retinex算法应用于图像增强时会导致图像边缘模糊与泛灰等问题。因此,针对传统的Retinex算法现存的问题,提出一种新颖的图像增强算法——基于L_0范数的Retinex算法RIEALN。首先通过全局L_0梯度最小化方法提取图像的轮廓成分,然后进行Retinex算法处理,再将提取的轮廓成分融合到原始图像,实现原始图像的增强。实现过程中还通过增加不同的L_0梯度最小化因子确保不同