IPM智能功率模块在高精度惯导测试设备中的应用

来源 :计算机测量与控制 | 被引量 : 0次 | 上传用户:luan0778
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为满足高精度惯导测试设备的需要,针对我国目前直流伺服系统仍采用IGBT、晶闸管为主功率电路的现状,采用第五代智能功率模块IPM开发了一款新型的直流伺服系统;该系统相对于采用传统功率器件的伺服系统在性能指标与可靠性方面都有极大地提高,电流环带宽达到了1kHz,同时具有很好的电磁兼容性;应用于某高精度惯导测试设备0.001°/s速率检测,速率精度为0.0×100,速率平稳度为9.2×10-5,结果表明,IPM智能功率模块应用于惯导测试设备中,系统性能稳定,伺服精度高,尤其是在功率
其他文献
针对现有邻域多粒度粗糙集的定义及相应知识发现算法的不足,重新建立基于邻域多粒度粗糙集的知识发现模型.首先构建了多邻域半径下的乐观邻域多粒度粗糙集模型和悲观邻域多粒
针对现阶段数据和特征决定自动睡眠分期模型的分类精度上限的问题,提出一种基于深度混合神经网络的自动睡眠分期模型。在模型主体构建方面,使用多尺度卷积神经网络自动学习高
车辆和行人检测是高级辅助驾驶(ADAS)中最基本也是研究最广泛的内容,而深度学习算法是当前性能最好的目标检测算法。然而,深度学习算法的计算量非常大,通常需要高性能的GPU显卡才能快速运行。在实际使用中,目标检测算法一般要求集成到车辆硬件系统中,因此算法对硬件资源的要求不能太高。基于SSD网络,提出一种轻量级的SSD网络,用于实时目标检测。通过减小输入图像的大小以及全连接层节点数量,减少网络复杂度,
分析了面向测量和控制系统的精确时钟同步协议IEEE1588标准,研究了通过以太网实现精确时钟协议的思想、原理和算法,以及数据包时间戳的生成方式;设计了精确时钟协议的具体实现方式,使用DP83640芯片,实现了以太网硬件辅助生成时间戳,分析了系统的原理、组成和功能;最后通过以太网搭建了测试系统,对不同的网络负载情况进行了主从时钟的同步精度测试;测试结果验证了通过以太网传输和同步时钟,能够容易达到微秒
针对信息获取与处理过程中的不确定性导致的遥感数据分类精度难以满足土地覆盖变化、环境监测、专题信息提取等应用方面的需求,提出了一种基于机器学习的分类融合算法。采用6种异构分类器,以查准率及查全率矩阵为先验知识,依据分类器差异性指数AD对单分类器进行优化组合,结合三维概率矩阵分别得到抽象级、排序级和度量级的分类融合结果输出,并以北京地区Landsat 8遥感影像的典型区域为研究对象进行分类预测。结果表
为满足目前工业现场对测控系统的高精度、实时性和多任务测控的需求,设计了一种基于Labview的工业现场测控系统;介绍了系统的总体结构,并对系统的软件和硬件进行了设计;采用平台级和用户级两级调度策略实现了工业现场测控系统的多任务并行调度,提高了测控系统的运行效率;通过合理配置Labview软件的RT实时引擎,使测控系统的任务循环周期达到毫秒级,提高了系统的实时性;实践表明,该系统具有测量精度高、实时
鉴于分布式电源分散的广阔性,选择了基于集散控制的GPRS无线通信网络,保证了监控系统的实时性;针对大功率分布式电源的并网问题,从电能重要性不断增强和安全性方面考虑,提出了监控
链接预测和社区发现是社交网络分析领域的两大研究方向。如何挖掘社区结构帮助提高链接预测效果具有十分重要的意义。在模块度最大化模型的基础上,提出一种基于社区结构特征提取与选择的链接预测方法。首先,在网络进化模型中引入基于社区结构的相似度指标建立局部特征,并利用影响力节点识别方法构建全局特征;然后,采用最小冗余最大相关度的特征选择算法度量特征之间的相互影响,并筛选出最有表示力的候选特征;最后,将基于经过
为解决传统遗传算法收敛速度慢、群体多样性不足的缺陷,提出了一种多策略并行的遗传算法;算法采用多策略并行处理的方式,产生不同策略模式下的个体,增加群体的多样性,再经过
针对复杂背景下的显微图像中的颗粒物检测,提出了一种快速、准确的颗粒图像分割新方法;该方法利用Canny算子得到图像中的颗粒边缘,采用格雷厄姆法计算颗粒边缘的凸壳,得到局部闭合区间;通过对单个闭合计区间内像素值信息的统计,得到局部阈值,利用局部阈值进行阈值分割得到颗粒二值图像;实验结果表明该方法有效克服了背景中纹理的影响,准确地分割出了颗粒图像,基于该算法开发的接触式表面洁净度检测仪具有较高的检测精