论文部分内容阅读
针对传统的半监督SVM训练方法把大量时间花费在非支持向量优化上的问题,提出了在凹半监督支持向量机方法中采用遗传FCM(Genetic Fuzzy C Mean,遗传模糊C均值)进行工作集样本预选取的方法。半监督SVM优化学习过程中,在原来训练集上(标签数据)加入了工作集(无标签数据),从而构成了新的训练集。该方法首先利用遗传FCM算法将来知数据划分成某个数量的子集,然后用凹半监督SVM对新数据进行训练得到决策边界与支持矢量,最后对无标识数据进行分类。这样通过减小工作样本集,选择那些可能成为支持向量的边界向