论文部分内容阅读
摘要:为了让学生更直观、简便、轻松的学习和理解现代控制理论教学中抽象的概念、理论及方法,以倒立摆系统为综合实验平台,结合现代控制理论教学大纲要求,详细阐述了面向现代控制理论的综合实验教学方法体系。通过系统建模和仿真理解诸如稳定性、可控性及极点配置等概念和方法,并通过实验平台验证相关理论及方法,改变了传统的教学模式,在实践教学中取得了一定的效果。
关键词:倒立摆;现代控制理论;综合实验
作者简介:张勇(1981-),男,山东临清人,内蒙古科技大学信息工程学院,讲师;贺美琳(1991-),女,河北保定人,内蒙古科技大学信息工程学院硕士研究生。(内蒙古 包头 014010)
基金项目:本文系国家教育部第二批“卓越工程师教育培养计划”支持项目、内蒙古教育科学规划课题(课题编号:NGJGH08115)的研究成果。
中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)22-0177-02
“现代控制理论”是“自动控制原理”的后续课程,也是硕士研究生“线性系统理论”和“最优控制理论”等课程的基础课程,[1]作为内蒙古科技大学自动化本科专业的基础课和重点课程,“现代控制理论”的教学改革多年来一直受到教师和学生的关注。内蒙古科技大学是一所普通本科院校,学生普遍理论基础偏差,而现代控制理论对数学及相关理论的依赖较重,并且课程中抽象的概念偏多,[2]致使大部分学生在学习过程中较吃力。
倒立摆系统是一个绝对不稳定系统,具有高阶次、多变量、不稳定、非线性和强耦合性的特点,它是进行控制理论研究的理想平台,也是学习和研究现代控制理论最为合适的实验装置之一。[3-5]由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,它能直观地表现出许多抽象的控制概念,如系统稳定性、可控性、系统收敛速度与抗干扰能力等。[4-6]同时,作为理想的自动控制领域教研与实验设备,它又能让学生在轻松的实验中非常直观、简便的对所学课程加深理解。[4,5]目前,国内外众多高校针对教学、科研及工程实践的需要,基本上都开设了“倒立摆控制系统”课程。[4]
内蒙古科技大学地处西部偏远地区,在综合考虑区域性学科发展、人才培养、教育科研及自动化专业课程体系建设需要的前提下,[7]组建了智能控制实验室,引进了深圳元创兴公司直线二级倒立摆(5套)和平面三级倒立摆系统(1套)。
本文针对实际教学中存在的问题,就一般普通本科院校学生该如何学习现代控制理论,提出了一种面向现代控制理论教学的倒立摆综合实验教学方法。
一、倒立摆实验系统的硬件构成及原理
倒立摆是指摆杆处于倒置不稳定状态,能够人为控制使其处于动态平衡的一种机构,由一个可以再水平轨道上自由移动的小车和倒置摆铰链而成。[5]以摆杆及小车系统为对象,在尽量使倒立摆保持垂直的同时,也要使小车在水平方向上保持某一基准位置,这是一个研究向小车施加水平方向力的控制系统的设计问题。[8]元创兴直线倒立摆实验系统就是完成上述目的的一个典型实验系统,由运动控制板卡、电控箱、机械本体和微型计算机几个部分组成,其原理框图如图1所示。
图1 倒立摆系统原理框图
直线倒立摆系统工作原理:控制器为电机,被控对象为小车及相连接的摆杆(控制器和被控对象构成倒立摆的机械本体,如图1虚线框),电机通过改变电机的速度来影响小车的加速度从而改变摆杆的倾斜角度来调整倒立摆的姿态。运动控制卡(安装于计算机机箱的PCI插槽上)采集旋转编码器数据和电机尾部编码器数据,通过计算就可以得到摆杆的角位移以及小车位移/加速度,然后根据控制算法计算出相应的控制量。控制量由计算机通过运动控制卡下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现闭环控制。
“自动控制理论”是内蒙古科技大学自动化、测控仪器及仪表、电气工程及其自动化等专业的理论基础课,但受各方面的影响,大多数学生对控制的理解还仅仅局限于考试的考点,而对于一个控制系统的实现往往没有具体的概念。通过对倒立摆系统的结构及原理的认识,可以让学生具体的了解一个控制系统的实现。从理论上的控制系统概念到具体的控制实现,改变了以往的教条模式,实现了理论与实践的结合。
二、现代控制理论综合实验教学改革
内蒙古科技大学现代控制理论教学大纲要求课堂教学32学时,实验8学时。为了改善学生对抽象概念及理论知识的认识,为了提高学生解决实际问题的能力,针对内蒙古科技大学大部分学生的基础水平偏差的现状及实验室现有的设备,对现代控制理论的教学做出如下改革:
1.优化教学内容,突出知识点
考虑到学生理论基础偏差,在教学过程中,在保证教学内容的严谨性和系统性前提下,不刻意追求定理证明中数学上的严密性,突出问题的背景和提法,强调贯穿于各章论述中的知识点,理论阐述力求简练和易懂。将所涉及的重要概念、理论和方法以结论的形式穿成各章内容的“知识点”。[1]如“可控性”,重点讲述概念产生的背景及提法、判据方法,而对其判据定理的证明则一带而过。
2.以倒立摆为课程应用背景,教学实验相结合
由于内蒙古科技大学学生考取研究生的比例偏少,而大部分学生的去向是工矿企业,直接参与就业,因此教学中对学生的动手能力及解决实际问题的能力的培养需要加强。结合内蒙古科技大学学生的实际,现代控制理论的教学以倒立摆系统为综合实验平台,课堂教学中以倒立摆为应用背景,将抽象的概念具体化。如围绕倒立摆“可控性”的概念,具体的讲述其相关的控制要求及控制量。实验教学中以被控对象为依托,加深对概念、理论及方法的理解。如在“倒立摆极点配置实验”中,以“摆体不倒,小车在原点”为控制目标的控制问题,理解和掌握控制性能指标与极点位置的理论关系,然后到极点配置算法的具体实施,让学生在实验中印证相关的理论及方法。 三、倒立摆综合实验内容及方法
针对内蒙古科技大学现代控制理论的教学改革,智能控制实验室根据现有的倒立摆实验平台开设了以下实验,从不同的角度训练学生解决实际问题的能力。
1.倒立摆认识实验(运动控制基础实验)
图2 直线一级倒立摆极点配置控制仿真模型
在讲述倒立摆系统结构、研究意义及必要性之余,提出了倒立摆系统的控制问题,让学生自主思考该系统的控制实现,需要测量的参数。围绕着控制信号、被控对象反馈信号的测量和现有的实验设备,自主设计测量方法。实验的目的是获取倒立摆系统的关键参数和熟悉编码器的基本原理。目标是使学生学会分析实际控制系统,掌握控制系统关键参数的获取方法,提高学生的动手能力。
2.倒立摆实验系统的建模
由于倒立摆系统的建模涉及较多的理论推导,如力学分析、数学推理及微分方程求解等,鉴于内蒙古科技大学学生的基础,直接给出了最后的相关的状态空间方程。如直线一级倒立摆的状态空间方程:
但在给出状态空间方程之前,先留给学生的问题是:一级摆、二级摆分别为几输入、几输出系统,相关的控制量和被控量分别是什么?有利于学生加深对状态空间方程的认识,同时也能更多的理解被控对象。
3.状态空间控制器设计与仿真
众所周知,倒立摆是一个不稳定的系统,容易通过对上述状态空间方程分析得到验证(系统开环极点为0, 0, 5.42217, -5.42217)。运用课程中所学的系统可控性分析方法,可知倒立摆系统是一个状态完全可控和输出完全可控的系统。在以往的考试中,极点配置问题的考题一般都是给定期望的极点,与考试不同的是倒立摆系统的期望极点没人给定,因此应引导学生对系统特点进行分析,得出控制性能指标的需求(较短的调整时间和合适的阻尼),进而计算相应的期望极点。根据控制器设计要求,并留有一定的裕量(设调整时间为2秒),选取期望的闭环极点:。进而,通过MATLAB仿真计算可求出反馈增益矩阵:,并得到控制量:U=kx,最后通过Simulink测试仿真效果,如图2所示。针对具体的问题训练学生对极点配置方法的运用,并通过MATLAB做相关的仿真,这样的教学方法有利于学生充分掌握课程中的知识点及相关概念。
4.软件实验平台实现
针对倒立摆的实时控制,实验室提供了Simulink实时控制平台和VC实时控制平台,学生只需将仿真时算出的K值写入相关的实验平台下即可观看实时控制效果,如图3所示。将K值的四个参数写到平台左下角对应的框内,即可观察摆的实时控制效果。在具体的实验中,只是简要的介绍下平台搭建的原理,而具体搭建只在毕业设计时做相关的要求。
图3 直线一级倒立摆VC实时控制平台
上述实验形成了一个有机整体,不仅可以让学生学到和理解现代控制理论的相关知识、概念及原理,同时也展示了一个具体的研究过程,对学生学习科研方法,进行课题研究和解决实际问题大有裨益。
)
四、结语
“现代控制理论”是一门理论性比较强的课程,抽象的概念和理论偏多。通过对倒立摆系统的结构及原理的认识,可以让学生具体的了解现代控制理论中的相关概念、理论及方法,并在具体的研究过程中,学习科研方法,提高解决实际问题的能力。教学实践表明,面向现代控制理论的倒立摆综合实验教学方法得到了多数学生的认可,并促使“现代控制理论”成为校级精品课。
参考文献:
[1]王从庆,丁勇.现代控制理论课程教学改革的实践与探讨[J].南京航空航天大学学报,2004,6(1):72-75.
[2]曲延滨.“现代控制理论”课程教学改革实践[J].实验室研究与探索,2005,24(S1):155-156,199.
[3]李东,陈强,孙振国,等.倒立摆教学实验系统的设计与应用[J].实验技术与管理,2006,23(9):100-102,106.
[4]王仲民,姚合环,王健民.倒立摆控制系统课堂教学与个性化培养模式的研究与实践[J].高等教育研究,2004,20(9):68-69.
[5]祝洁.直线一级倒立摆的起摆及稳摆的智能控制[D].济南:山东大学,2009.
[6]李劲松,颜国正,冯剑舟,等.基于线性二次型最优控制策略的倒立摆实验系统搭建[J].实验室研究与探索,2010,29(3):38-40,60.
[7]崔桂梅,贾玉英.自动化专业应用型人才培养模式的改革和实践[J].实验室研究与探索,2009,28(11):114-116,146.
[8]崔平,翁正新.基于状态空间极点配置的倒立摆平衡控制[J].实验室研究与探索,2003,22(2):70-72.
(责任编辑:孙晴)
关键词:倒立摆;现代控制理论;综合实验
作者简介:张勇(1981-),男,山东临清人,内蒙古科技大学信息工程学院,讲师;贺美琳(1991-),女,河北保定人,内蒙古科技大学信息工程学院硕士研究生。(内蒙古 包头 014010)
基金项目:本文系国家教育部第二批“卓越工程师教育培养计划”支持项目、内蒙古教育科学规划课题(课题编号:NGJGH08115)的研究成果。
中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)22-0177-02
“现代控制理论”是“自动控制原理”的后续课程,也是硕士研究生“线性系统理论”和“最优控制理论”等课程的基础课程,[1]作为内蒙古科技大学自动化本科专业的基础课和重点课程,“现代控制理论”的教学改革多年来一直受到教师和学生的关注。内蒙古科技大学是一所普通本科院校,学生普遍理论基础偏差,而现代控制理论对数学及相关理论的依赖较重,并且课程中抽象的概念偏多,[2]致使大部分学生在学习过程中较吃力。
倒立摆系统是一个绝对不稳定系统,具有高阶次、多变量、不稳定、非线性和强耦合性的特点,它是进行控制理论研究的理想平台,也是学习和研究现代控制理论最为合适的实验装置之一。[3-5]由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,它能直观地表现出许多抽象的控制概念,如系统稳定性、可控性、系统收敛速度与抗干扰能力等。[4-6]同时,作为理想的自动控制领域教研与实验设备,它又能让学生在轻松的实验中非常直观、简便的对所学课程加深理解。[4,5]目前,国内外众多高校针对教学、科研及工程实践的需要,基本上都开设了“倒立摆控制系统”课程。[4]
内蒙古科技大学地处西部偏远地区,在综合考虑区域性学科发展、人才培养、教育科研及自动化专业课程体系建设需要的前提下,[7]组建了智能控制实验室,引进了深圳元创兴公司直线二级倒立摆(5套)和平面三级倒立摆系统(1套)。
本文针对实际教学中存在的问题,就一般普通本科院校学生该如何学习现代控制理论,提出了一种面向现代控制理论教学的倒立摆综合实验教学方法。
一、倒立摆实验系统的硬件构成及原理
倒立摆是指摆杆处于倒置不稳定状态,能够人为控制使其处于动态平衡的一种机构,由一个可以再水平轨道上自由移动的小车和倒置摆铰链而成。[5]以摆杆及小车系统为对象,在尽量使倒立摆保持垂直的同时,也要使小车在水平方向上保持某一基准位置,这是一个研究向小车施加水平方向力的控制系统的设计问题。[8]元创兴直线倒立摆实验系统就是完成上述目的的一个典型实验系统,由运动控制板卡、电控箱、机械本体和微型计算机几个部分组成,其原理框图如图1所示。
图1 倒立摆系统原理框图
直线倒立摆系统工作原理:控制器为电机,被控对象为小车及相连接的摆杆(控制器和被控对象构成倒立摆的机械本体,如图1虚线框),电机通过改变电机的速度来影响小车的加速度从而改变摆杆的倾斜角度来调整倒立摆的姿态。运动控制卡(安装于计算机机箱的PCI插槽上)采集旋转编码器数据和电机尾部编码器数据,通过计算就可以得到摆杆的角位移以及小车位移/加速度,然后根据控制算法计算出相应的控制量。控制量由计算机通过运动控制卡下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现闭环控制。
“自动控制理论”是内蒙古科技大学自动化、测控仪器及仪表、电气工程及其自动化等专业的理论基础课,但受各方面的影响,大多数学生对控制的理解还仅仅局限于考试的考点,而对于一个控制系统的实现往往没有具体的概念。通过对倒立摆系统的结构及原理的认识,可以让学生具体的了解一个控制系统的实现。从理论上的控制系统概念到具体的控制实现,改变了以往的教条模式,实现了理论与实践的结合。
二、现代控制理论综合实验教学改革
内蒙古科技大学现代控制理论教学大纲要求课堂教学32学时,实验8学时。为了改善学生对抽象概念及理论知识的认识,为了提高学生解决实际问题的能力,针对内蒙古科技大学大部分学生的基础水平偏差的现状及实验室现有的设备,对现代控制理论的教学做出如下改革:
1.优化教学内容,突出知识点
考虑到学生理论基础偏差,在教学过程中,在保证教学内容的严谨性和系统性前提下,不刻意追求定理证明中数学上的严密性,突出问题的背景和提法,强调贯穿于各章论述中的知识点,理论阐述力求简练和易懂。将所涉及的重要概念、理论和方法以结论的形式穿成各章内容的“知识点”。[1]如“可控性”,重点讲述概念产生的背景及提法、判据方法,而对其判据定理的证明则一带而过。
2.以倒立摆为课程应用背景,教学实验相结合
由于内蒙古科技大学学生考取研究生的比例偏少,而大部分学生的去向是工矿企业,直接参与就业,因此教学中对学生的动手能力及解决实际问题的能力的培养需要加强。结合内蒙古科技大学学生的实际,现代控制理论的教学以倒立摆系统为综合实验平台,课堂教学中以倒立摆为应用背景,将抽象的概念具体化。如围绕倒立摆“可控性”的概念,具体的讲述其相关的控制要求及控制量。实验教学中以被控对象为依托,加深对概念、理论及方法的理解。如在“倒立摆极点配置实验”中,以“摆体不倒,小车在原点”为控制目标的控制问题,理解和掌握控制性能指标与极点位置的理论关系,然后到极点配置算法的具体实施,让学生在实验中印证相关的理论及方法。 三、倒立摆综合实验内容及方法
针对内蒙古科技大学现代控制理论的教学改革,智能控制实验室根据现有的倒立摆实验平台开设了以下实验,从不同的角度训练学生解决实际问题的能力。
1.倒立摆认识实验(运动控制基础实验)
图2 直线一级倒立摆极点配置控制仿真模型
在讲述倒立摆系统结构、研究意义及必要性之余,提出了倒立摆系统的控制问题,让学生自主思考该系统的控制实现,需要测量的参数。围绕着控制信号、被控对象反馈信号的测量和现有的实验设备,自主设计测量方法。实验的目的是获取倒立摆系统的关键参数和熟悉编码器的基本原理。目标是使学生学会分析实际控制系统,掌握控制系统关键参数的获取方法,提高学生的动手能力。
2.倒立摆实验系统的建模
由于倒立摆系统的建模涉及较多的理论推导,如力学分析、数学推理及微分方程求解等,鉴于内蒙古科技大学学生的基础,直接给出了最后的相关的状态空间方程。如直线一级倒立摆的状态空间方程:
但在给出状态空间方程之前,先留给学生的问题是:一级摆、二级摆分别为几输入、几输出系统,相关的控制量和被控量分别是什么?有利于学生加深对状态空间方程的认识,同时也能更多的理解被控对象。
3.状态空间控制器设计与仿真
众所周知,倒立摆是一个不稳定的系统,容易通过对上述状态空间方程分析得到验证(系统开环极点为0, 0, 5.42217, -5.42217)。运用课程中所学的系统可控性分析方法,可知倒立摆系统是一个状态完全可控和输出完全可控的系统。在以往的考试中,极点配置问题的考题一般都是给定期望的极点,与考试不同的是倒立摆系统的期望极点没人给定,因此应引导学生对系统特点进行分析,得出控制性能指标的需求(较短的调整时间和合适的阻尼),进而计算相应的期望极点。根据控制器设计要求,并留有一定的裕量(设调整时间为2秒),选取期望的闭环极点:。进而,通过MATLAB仿真计算可求出反馈增益矩阵:,并得到控制量:U=kx,最后通过Simulink测试仿真效果,如图2所示。针对具体的问题训练学生对极点配置方法的运用,并通过MATLAB做相关的仿真,这样的教学方法有利于学生充分掌握课程中的知识点及相关概念。
4.软件实验平台实现
针对倒立摆的实时控制,实验室提供了Simulink实时控制平台和VC实时控制平台,学生只需将仿真时算出的K值写入相关的实验平台下即可观看实时控制效果,如图3所示。将K值的四个参数写到平台左下角对应的框内,即可观察摆的实时控制效果。在具体的实验中,只是简要的介绍下平台搭建的原理,而具体搭建只在毕业设计时做相关的要求。
图3 直线一级倒立摆VC实时控制平台
上述实验形成了一个有机整体,不仅可以让学生学到和理解现代控制理论的相关知识、概念及原理,同时也展示了一个具体的研究过程,对学生学习科研方法,进行课题研究和解决实际问题大有裨益。
)
四、结语
“现代控制理论”是一门理论性比较强的课程,抽象的概念和理论偏多。通过对倒立摆系统的结构及原理的认识,可以让学生具体的了解现代控制理论中的相关概念、理论及方法,并在具体的研究过程中,学习科研方法,提高解决实际问题的能力。教学实践表明,面向现代控制理论的倒立摆综合实验教学方法得到了多数学生的认可,并促使“现代控制理论”成为校级精品课。
参考文献:
[1]王从庆,丁勇.现代控制理论课程教学改革的实践与探讨[J].南京航空航天大学学报,2004,6(1):72-75.
[2]曲延滨.“现代控制理论”课程教学改革实践[J].实验室研究与探索,2005,24(S1):155-156,199.
[3]李东,陈强,孙振国,等.倒立摆教学实验系统的设计与应用[J].实验技术与管理,2006,23(9):100-102,106.
[4]王仲民,姚合环,王健民.倒立摆控制系统课堂教学与个性化培养模式的研究与实践[J].高等教育研究,2004,20(9):68-69.
[5]祝洁.直线一级倒立摆的起摆及稳摆的智能控制[D].济南:山东大学,2009.
[6]李劲松,颜国正,冯剑舟,等.基于线性二次型最优控制策略的倒立摆实验系统搭建[J].实验室研究与探索,2010,29(3):38-40,60.
[7]崔桂梅,贾玉英.自动化专业应用型人才培养模式的改革和实践[J].实验室研究与探索,2009,28(11):114-116,146.
[8]崔平,翁正新.基于状态空间极点配置的倒立摆平衡控制[J].实验室研究与探索,2003,22(2):70-72.
(责任编辑:孙晴)