论文部分内容阅读
提出一类新的求解无约束优化问题的记忆梯度法,证明了算法的全局收敛性.当目标函数为一致凸函数时,对其线性收敛速率进行了分析.新算法在迭代过程中无需对步长进行线性搜索,仅需对算法中的一些参数进行预测估计,从而减少了目标函数及梯度的迭代次数,降低了算法的计算量和存储量.数值试验表明算法是有效的.