论文部分内容阅读
对于O2,O2/He,O2/Ar等的气体放电过程,进行了玻尔兹曼方程的计算求解,获得了电子能量分布函数、平均电子能量、能量利用效率等参数。计算结果表明,获得的电子能量分布函数呈现出典型的非麦克斯韦型分布,这说明在较低的电场强度下不宜采用麦克斯韦型分布的电子能量分布函数。在同样的约化场强(E/N)下纯氧放电的平均电子能量最低,加入载气He和Ar后平均电子能量增加。同样氧气含量的O2/He和O2/Ar混合物,其平均电子能量随着约化场强的变化曲线存在一个交叉点,当E/N较小时,O2/Ar的平均电子能量较高,而当E/N较大时O2/He的平均电子能量较高。添加NO气体对击穿场强影响不大,因此在放电气体中引入NO,降低电离能进而降低约化场强E/N并不是提高单重态氧产率的主要因素。当氧气中含有15%的单重态氧O2(a1Δ)时对平均电子能量有一定的影响,但并不显著。纯氧放电的最佳约化场强为10Td,随着O2含量的降低,最佳约化场强也逐渐降低。平均电子能量随着放电频率的变化先是有一个平台期,然后开始一直下降。用于激发O2(a1Δ)的电子能量利用效率随着放电频率的变化在E/N不同时有所不同,10Td时一直下降,但50Td时则呈现出先上升后下降的趋势,存在着一个最佳放电频率,300K、1333.22Pa时的最佳放电频率为10GHz。
For the gas discharge process of O2, O2 / He, O2 / Ar, etc., the Boltzmann equation is calculated and solved, and the parameters of electron energy distribution function, average electron energy, energy utilization efficiency and the like are obtained. The calculated results show that the electron energy distribution obtained shows a typical non-Maxwellian distribution, which shows that the electron energy distribution function of Maxwell-type distribution should not be used at low electric field strength. Under the same reduced field strength (E / N), the average electron energy of pure oxygen discharge is the lowest, and the average electron energy increases with the addition of carrier gas He and Ar. The same oxygen content of O2 / He and O2 / Ar mixture, the average electron energy with the reduced field strength curve there is an intersection point, when E / N is small, O2 / Ar average electron energy is higher, and when The larger the E / N, the higher the average electron energy of O2 / He. Addition of NO gas has little effect on the breakdown field strength. Therefore, introducing NO into the discharge gas to reduce the ionization energy and thus reducing the field strength E / N is not the main factor to increase the singlet oxygen production rate. When oxygen contains 15% of singlet oxygen, O2 (a1Δ), the average electron energy has a certain effect, but not significant. The best derated field of pure oxygen discharge is 10Td. With the decrease of O2 content, the optimum degenerated field strength also decreases gradually. The average electron energy first has a plateau as the discharge frequency changes, and then begins to decline. The energy use efficiency of electrons used to excite O2 (a1Δ) varies with E / N at different discharge frequencies, decreases at 10Td, but increases at first and then decreases at 50Td, and there is an optimum Discharge frequency, 300K, 1333.22Pa when the best discharge frequency of 10GHz.