论文部分内容阅读
通过对养殖池中影响溶氧变化因子的分析,选择溶氧、水深(cm)…水温度等9项因子作为输入参数,建立了溶氧预测模型.在该模型中,采用LMBP算法对BP神经网络进行优化,解决了BP神经网络的训练存在陷入局部最小点或训练速度慢等问题,提高了网络训练速度、保证了预测精度,具有较好的实用价值并可应用于其它水质因子的预测.