论文部分内容阅读
摄人心魄总秘诀
数学上有一个非常著名的问题——鸡兔同笼问题。题型如:鸡兔同笼,共有45只头,146只脚,笼中有鸡兔各多少只?这种问题的特点是:题目中有两个或两个以上未知数,要求根据总数量,求出各未知的单量。
解“鸡兔同笼问题”的常用方法是“替换法”、“转化法”、“置换法”等。解题时,根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,将两个未知数转换成一个未知数,从而解出答案。概括起来,解“鸡兔同笼问题”的基本关系式是:
鸡数:(每只兔的脚数×鸡兔总数一实际脚数)÷(每只兔的脚数一每只鸡的脚数)
兔数=鸡兔总数一鸡数
摄人心魄入门篇
例1 一个饲养小组养鸡、兔共80只,共有脚220。这个饲养小组养鸡、兔各多少只?
小秘诀:既然鸡、兔共80只,首先假设这80只全都是兔,那么就应该有320只脚。而题目指出有220只脚,因此在假设中算得的320只脚和实际相比多了100只。为什么呢?因为一只鸡只有2只脚,而我们把它当成4只脚算了。如果用一只鸡来置换一只兔,就要减少2只脚,那么100里包含多少个2,就是我们把多少只鸡当成了兔,显然100÷2=50(只)。所以鸡有50只,兔有30只。
当然,我们也可以把80只都假设为鸡,把以上问题反过来思考。
解法一:假设80只全是兔。
(4×80—220)÷(4—2)
=(320—220)÷2
=100÷2
=50(只)…………………鸡
80—50=30(只)………兔
解法二:假设80只全是鸡。
(220—2×80)÷(4—2)
=(220—160)÷2
=60÷2
=30(只)…………………兔
80一30=50(只)………鸡
答:这个饲养小组养鸡50只,养兔30只。
例2 一个集邮爱好者买了10分和20分的邮票共100张,总面值18元8角,两种邮票各有多少张?
小秘诀:先假设买来的100张邮票全是20分一张的,那么总值应是2000分,比原来的总值多120分(总面值18元8角为1880分)。多出的120分,是因为把10分一张的看作了20分一张的,每张多算10分得出的。由此可求出10分一张的邮票的张数。另外,可以把100张邮票都假设为10分一张的,把以上问题反过来思考。
解法一:假设全是20分一张的邮票。
(100×20—1880)÷(20一10)
=120÷10
=12(张)………………10分一张的
100—12=88(张)…20分一张的
解法二:假设全是10分一张的邮票。
(1880一100×10)÷(20—10)
=880÷10
=88(张)………………20分一张的
100—88=12(张)…10分一张的
答:10分一张的邮票有12张,20分一张的邮票有88张。
摄人心魄提升篇
光明小学三(2)班买来3个排球和2个足球,共花去111元。每个足球比每个排球贵3元。每个排球和每个足球各多少元?
小秘诀根据“每个足球比每个排球贵3元”可知,当把买2个足球换成买2个排球时,买球所花的钱就会比原来少6元。假设买的是(3 2)个排球,由此可以求出每个排球的价钱。同样,也可以将3个排球换成3个足球来考虑。 解:每个排球的价钱:
(111—3×2)÷(3 2)
=(11 1—6)÷5
=105÷5
=21(元)
每个足球的价钱:
21 3=24(元)
答:每个排球的价钱是21元,每个足球的价钱是24元。
摄人心魄骨灰篇
买2本笔记本的价钱等于买8本练习本的价钱。如果买3本笔记本和5本练习本共花17元,两种本子每本各多少元?
小秘诀根据“买2本笔记本的价钱等于买8本练习本的价钱”,可以知道“买1本笔记本的价钱等于买4本练习本的价钱”,买3本笔记本的钱可以买(4×3)本练习本。这样,将买笔记本的本数转换成买练习本的本数,从而顺利求出每本练习本的价钱。
解:一本练习本的价钱:
5 (8÷2)×3
=5 4×3
=17(只)
17÷17=1(元) 一本笔记本的价钱:
1×8÷2
=8÷2
=4(元)
答:一本练习本1元,一本笔记本4元。
(广东省佛山市实验学校)
数学上有一个非常著名的问题——鸡兔同笼问题。题型如:鸡兔同笼,共有45只头,146只脚,笼中有鸡兔各多少只?这种问题的特点是:题目中有两个或两个以上未知数,要求根据总数量,求出各未知的单量。
解“鸡兔同笼问题”的常用方法是“替换法”、“转化法”、“置换法”等。解题时,根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,将两个未知数转换成一个未知数,从而解出答案。概括起来,解“鸡兔同笼问题”的基本关系式是:
鸡数:(每只兔的脚数×鸡兔总数一实际脚数)÷(每只兔的脚数一每只鸡的脚数)
兔数=鸡兔总数一鸡数
摄人心魄入门篇
例1 一个饲养小组养鸡、兔共80只,共有脚220。这个饲养小组养鸡、兔各多少只?
小秘诀:既然鸡、兔共80只,首先假设这80只全都是兔,那么就应该有320只脚。而题目指出有220只脚,因此在假设中算得的320只脚和实际相比多了100只。为什么呢?因为一只鸡只有2只脚,而我们把它当成4只脚算了。如果用一只鸡来置换一只兔,就要减少2只脚,那么100里包含多少个2,就是我们把多少只鸡当成了兔,显然100÷2=50(只)。所以鸡有50只,兔有30只。
当然,我们也可以把80只都假设为鸡,把以上问题反过来思考。
解法一:假设80只全是兔。
(4×80—220)÷(4—2)
=(320—220)÷2
=100÷2
=50(只)…………………鸡
80—50=30(只)………兔
解法二:假设80只全是鸡。
(220—2×80)÷(4—2)
=(220—160)÷2
=60÷2
=30(只)…………………兔
80一30=50(只)………鸡
答:这个饲养小组养鸡50只,养兔30只。
例2 一个集邮爱好者买了10分和20分的邮票共100张,总面值18元8角,两种邮票各有多少张?
小秘诀:先假设买来的100张邮票全是20分一张的,那么总值应是2000分,比原来的总值多120分(总面值18元8角为1880分)。多出的120分,是因为把10分一张的看作了20分一张的,每张多算10分得出的。由此可求出10分一张的邮票的张数。另外,可以把100张邮票都假设为10分一张的,把以上问题反过来思考。
解法一:假设全是20分一张的邮票。
(100×20—1880)÷(20一10)
=120÷10
=12(张)………………10分一张的
100—12=88(张)…20分一张的
解法二:假设全是10分一张的邮票。
(1880一100×10)÷(20—10)
=880÷10
=88(张)………………20分一张的
100—88=12(张)…10分一张的
答:10分一张的邮票有12张,20分一张的邮票有88张。
摄人心魄提升篇
光明小学三(2)班买来3个排球和2个足球,共花去111元。每个足球比每个排球贵3元。每个排球和每个足球各多少元?
小秘诀根据“每个足球比每个排球贵3元”可知,当把买2个足球换成买2个排球时,买球所花的钱就会比原来少6元。假设买的是(3 2)个排球,由此可以求出每个排球的价钱。同样,也可以将3个排球换成3个足球来考虑。 解:每个排球的价钱:
(111—3×2)÷(3 2)
=(11 1—6)÷5
=105÷5
=21(元)
每个足球的价钱:
21 3=24(元)
答:每个排球的价钱是21元,每个足球的价钱是24元。
摄人心魄骨灰篇
买2本笔记本的价钱等于买8本练习本的价钱。如果买3本笔记本和5本练习本共花17元,两种本子每本各多少元?
小秘诀根据“买2本笔记本的价钱等于买8本练习本的价钱”,可以知道“买1本笔记本的价钱等于买4本练习本的价钱”,买3本笔记本的钱可以买(4×3)本练习本。这样,将买笔记本的本数转换成买练习本的本数,从而顺利求出每本练习本的价钱。
解:一本练习本的价钱:
5 (8÷2)×3
=5 4×3
=17(只)
17÷17=1(元) 一本笔记本的价钱:
1×8÷2
=8÷2
=4(元)
答:一本练习本1元,一本笔记本4元。
(广东省佛山市实验学校)