论文部分内容阅读
该文提出了一种基于特征级融合的特征抽取新方法,首先,给出了一种合理的特征融合策略,即利用复向量给出组合特征的表示,将特征空间从实向量空间拓广到复向量空间,然后,发展了具有统计不相关性的鉴别分析的理论,并将其用于复向量空间内最优鉴别特征的抽取,最后,在Concordia大学的CENPARMI手写体阿拉伯数字数据库以及南京理工大学NUST603HW手写汉字库上的试验结果表明,所提出的组合特征抽取方法不仅具有很强的维数压缩能力,而且较大幅度地提高了识别率。