揭示思维过程 培养思维能力

来源 :中学教学参考·理科版 | 被引量 : 0次 | 上传用户:baby3911
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  物理难学,难在理性的成分太多,严格的分析、模型的抽象、概念规律的得出、严密的运算和推导……一切都那么讲究逻辑性,都那么抽象;难在学生无法领悟物理概念、规律形成的思维过程。虽然教师讲授时好像一切都是那么的按部就班,而学生听起来却是云里雾里,不知所措,以致无法真正理解物理概念、规律。笔者在带领学生学习、研究教材的活动中,通过揭示教材思维特征、展示教师思维过程和剖析学生思维过程,让学生自主探究思索概念、规律形成的过程,让学生在理性的分析思考中理解概念、规律。 全文查看链接
其他文献
一、进行“题组”教学  所谓“题组”教学,就是在备课的时候,将教学本身的科学性和学生对数学知识的认识有机地结合起来,根据教学目的、教材内容和学生的知识基础,精心选编一组例题或习题,在课堂上举例或让学生做练习的一种教学方法.我把这类题称之为“题组”.  比如:讲授二次函数求最大(或最小)值时,通过对二次函数的表达式的变形,即:y=ax2 bx c=ax b2a2 4ac-b24a,学生对照
习题课是化学教学的重要形式之一,通过习题课的教学,可帮助学生巩固、深化基础知识,消除困惑,纠正存在的问题,梳理知识结构,完善知识系统,达到培养学生思维能力,分析、解决问题的能力的目的。但是,习题课教学知识密度大、题型多,学生容易疲劳,容易感到枯燥、乏味,从而丧失学习化学的兴趣。如何在化学习题课上激发学生的学习兴趣,一直是中学化学教师探究的课题,现本人就这个问题谈几点体会。  一、精选习题,以精讲
“课程改革没有正确的答案,但会留下我们共同探索的足迹.”面对文化基础薄弱、学习能力低下、学习兴趣和信心缺乏的中职学前教育专业学生,如何摆脱当前数学教学中学生厌学、教师难教的困境,让数学课堂真正成为学生获取知识、提高能力的殿堂,为专业课程以及专业技能的学习服务,是一个深深困扰并亟待每一位中职数学教师研究的课题.作为一名中职学前教育专业的数学教师,我一直在思考与探索,并在教学实践中不断进行尝试.下面,
在解题教学中,笔者发现,有些题目的物理过程含而不露,需结合已知条件,应用相关概念和规律,进行具体分析。这些题目的迷惑因素大,学生在解题中容易犯思维定式的错误。为此,教师应要求学生分析题目时谨慎细致,不要急于动笔列方程,以免用假的过程模型代替了实际的物理过程,防止定式思维的负迁移。  【例题】 如图1所示,用长为L的丝线一端连接质量为m,带电量为 q的小球,另一端悬挂于O点,处在水平向右的匀强电场(
笔者在备课时,遇到不少“顾名生疑”甚至是“浮想联翩”的概念,比如“匀速圆周运动”“离心力”等,现将它们记录成“故事”的形式来反思与剖析,盼能抛砖引玉。  一、名不副实的“匀速圆周运动”  “匀速运动”本指速度不变化(加速度为零)的运动,因此只能在直线上匀速运动,由此看来“匀速圆周运动”从名义上肯定是不准确的。那么为何要这样称谓呢?原来质点在圆周上做了一种特殊的运动,即在任何相等的时间内通过的弧长Δ
研究性学习的深入开展,改变了传统的教学模式,使学生处于探索知识、发展能力的主体地位。研究性学习是培养学生自学能力、探究能力、思维能力、分析综合能力和创造能力的最佳途径。研究性学习方式多种多样,开放性试题是其中之一。其主要通过多种解题途径、多种解题、多种解题结论的开放性设计,培养学生应用知识的能力、求异思维能力,提高自我素质。下面以2003年高考理综31题的再解析,探讨开放性试题的求解与研究性学习的
恒定电流是高中物理中一个非常重要的内容。笔者在教学过程中发现,学生在处理可变电阻在电路中消耗功率最大值的问题上往往事倍功半,甚至出现无果而终的情况。究其原因,不是因为计算量太大、运算粗心造成,最后只好不了了之,就是因为无法灵活地从等效电源的角度去解决问题。本文拟从电源输出功率的角度谈谈两类情况的电源等效及其理论依据。  【例1】 如图1所示,电源的电动势和内阻分别E和r,R为滑动变阻器(阻值很大)
轴对称和中心对称的相关知识在中考命题中属基础题型,单独考查时多为填空、选择、画图题;综合考查时,经常与线段的垂直平分线、角平分线、等腰三角形等知识综合应用。 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原
摘要:文章应用数据包络分析(DBA)模型(C2R)对医药行业上市公司业绩进行实证研究。通过有效性分析,对其业绩进行效率衡量,得出这些公司业绩的有效性如何以及该在哪些方面进行改进,为这些上市公司提高效率提供了数据支持。  关键词:数据包络分析;决策单元;效率评价    一、引言    对上市公司业绩的评价方法有多种,除了基本的上市公司的财务报表分析和股票行情分析外,也可以借助于数字模型对上市公司进行
正弦定理是高中阶段一个很重要的定理,证明方法也很多.苏教版教材(必修5)是从直角三角形入手,探究出直角三角形中的邊角关系是asinA=bsinB=csinC ,然后提出问题:结论对任意三角形也成立吗?同时提供了证明途径,我们总结为:①三角形高法;②面积法;③外接圆法;④向量的数量积法;⑤坐标法.教材中只完整地给出了方法①和④的证明过程,而笔者认为其他的三种方法有必要向学生介绍,因为虽然得到的定理内