【摘 要】
:
目的在无人驾驶系统技术中,控制车辆转向以跟踪特定路径是实现驾驶的关键技术之一,大量基于传统控制的方法可以准确跟踪路径,然而如何在跟踪过程中实现类人的转向行为仍是当前跟踪技术面临的挑战性问题之一。现有传统转向模型并没有参考人类驾驶行为,难以实现过程模拟。此外,现有大多数基于神经网络的转向控制模型仅仅以视频帧作为输入,鲁棒性和可解释性不足。基于此,本文提出了一个融合神经网络与传统控制器的转向模型:深度
【机 构】
:
中山大学计算机学院,广州510006;中山大学智能工程学院,广州510006;云洲智能科技有限公司,珠海519080
论文部分内容阅读
目的在无人驾驶系统技术中,控制车辆转向以跟踪特定路径是实现驾驶的关键技术之一,大量基于传统控制的方法可以准确跟踪路径,然而如何在跟踪过程中实现类人的转向行为仍是当前跟踪技术面临的挑战性问题之一。现有传统转向模型并没有参考人类驾驶行为,难以实现过程模拟。此外,现有大多数基于神经网络的转向控制模型仅仅以视频帧作为输入,鲁棒性和可解释性不足。基于此,本文提出了一个融合神经网络与传统控制器的转向模型:深度纯追随模型(deep pure pursuit,deep PP)。方法在deep PP中,首先利用卷积神
其他文献
深度神经网络在图像识别、语言识别和机器翻译等人工智能任务中取得了巨大进展,很大程度上归功于优秀的神经网络结构设计。神经网络大都由手工设计,需要专业的机器学习知识以及大量的试错。为此,自动化的神经网络结构搜索成为研究热点。神经网络结构搜索(neural architecture search, NAS)主要由搜索空间、搜索策略与性能评估方法 3部分组成。在搜索空间设计上,出于计算量的考虑,通常不会搜
图像质量评价一直是图像处理和计算机视觉领域的一个基础问题,图像质量评价模型也广泛应用于图像/视频编码、超分辨率重建和图像/视频视觉质量增强等相关领域。图像质量评价主要包括全参考图像质量评价、半参考图像质量评价和无参考图像质量评价。全参考图像质量评价和半参考图像质量评价分别指预测图像质量时参考信息完全可用和部分可用,而无参考图像质量评价是指预测图像质量时参考信息不可用。虽然全参考和半参考图像质量评价
目的随着云计算和移动互联网技术的飞速发展,屏幕图像编码已成为视频压缩领域新的研究热点。帧内块复制(intra block copy,IBC)算法是屏幕内容编码(screen content coding,SCC)中的核心算法,已经成为高效视频编码(high efficiency video coding,HEVC)等标准中屏幕内容编码的重要组成部分。为了进一步消除IBC算法中的位移矢量(displ
目的针对视觉目标跟踪(video object tracking,VOT)和视频对象分割(video object segmentation,VOS)问题,研究人员提出了多个多任务处理框架,但是该类框架的精确度和鲁棒性较差。针对此问题,本文提出一个融合多尺度上下文信息和视频帧间信息的实时视觉目标跟踪与视频对象分割多任务的端到端框架。方法文中提出的架构使用了由空洞深度可分离卷积组成的更加多尺度的空洞
铁路作为国家重要基础设施、国民经济大动脉和大众化运输方式,对社会经济发展起着不可替代的支撑作用。轨道是铁路系统的重要组件,轨道病害检测是铁路工务部门的核心业务。传统的人工巡检不仅费时费力,而且检测结果容易受到各种主观因素的影响。因此,自动化轨道病害检测对维护铁路运输安全具有重要的现实意义。考虑到视觉检测在速度、成本和可视化等方面的优势,本文聚焦于轨道病害视觉检测技术。首先以广泛应用的无砟轨道为例介
目的目标遮挡一直是限制跟踪算法精确度和稳定性的问题之一,针对该问题,提出一种抗遮挡的多层次重定位目标跟踪算法。方法通过平均峰值相关能量动态分配特征权重,将梯度特征与颜色直方图特征动态地结合起来进行目标跟踪。利用多峰值检测和峰值波动情况进行目标状态判定,若目标状态不理想,则停止模板更新,避免逐帧更新导致目标漂移,继续跟踪目标;若判定目标遮挡,则提取对应特征点,使用最邻近距离比进行特征匹配和筛选,丢弃