论文部分内容阅读
当设计高电压的火花隙时,主要的问题是考虑产生在主绝缘子内表面的飞弧现象,飞弧主要取决于所使用的绝缘材料种类以及它的表面状况和形状。象图1的图形通常是在各种不同的状态中得到的,但是它们对于设计火花隙几乎没有实际的帮助,除非实验是在严格的按照同最后设想相同的状态下完成的。尽管如此,这些试验清楚地指出了聚四氟乙烯是所使用材料中最好的一种,加上它的众所周知的清洁的特性,从而保证了稳定的表面状态。对于20或30千伏的电压,聚四氟乙烯的飞弧击穿距离实际上是线性的,几乎比空气击穿距离大3倍。对于更高的电压,距离将更迅速地增大,在应用到接近100千伏的电压之后,我们看到在100毫微秒内出现大于40厘米长的飞弧。在这些情况
When designing a high-voltage spark gap, the main issue is to consider the phenomenon of arcing that occurs on the inner surface of the main insulator, which depends mainly on the type of insulating material used and its surface condition and shape. The graphs like Figure 1 are usually obtained in a variety of different states, but they provide little practical aid in designing the spark gap unless the experiment is done exactly as it was in the last scenario. Nevertheless, these tests clearly indicate that Teflon is the best of the materials used, together with its well-known cleaning characteristics, thus ensuring a stable surface condition. For a voltage of 20 or 30 kilovolts, the flying arc breakdown of Teflon is virtually linear, almost three times greater than the air breakdown distance. For higher voltages, the distance will increase more rapidly, and after applying voltages approaching 100 kV, we see a flashover greater than 40 cm in 100 ns. In these situations