论文部分内容阅读
A series of rare earth hydroxide and oxide nanoparticles have been prepared by precipitation method with alcohol as the dispersive and protective reagent. Transmission electron microscope (TEEM) images indicate that the particles are spherical in shape and smaller than 100 nm in size. The crystallite sizes of cubic Ln2O3 have lanthanide shrinking effect, while average crystal lattice distortion rates possess lanthanide swelling effect. The diffraction peak intensity of heavy rare earth oxide nanometer powders is remarkably stronger than that of light rare earth oxide nanometer powders. The variation of diffraction intensity with atomic number presents an inverted W type, forming a double peak structure. Fourier transform infrared (FTIR) spectrums reveal that Ln2O3 nanopowders have higher surface activity than that of ordinary Ln2O3 powders. The UV-vis spectra show that Ln-O bond of these particles is slightly blue-shifted, and its absorption intensity decreases.
A series of rare earth hydroxide and oxide nanoparticles have been prepared by precipitation method with alcohol as the dispersive and protective reagent. Transmission electron microscope (TEEM) images indicate that the particles are spherical in shape and smaller than 100 nm in size. The crystallite sizes of cubic Ln2O3 have lanthanide shrinking effect, while average crystal lattice distortion rates possess lanthanide swelling effect. The diffraction of peak intensity of heavy rare earth oxide nanometer powders is remarkably stronger than that of light rare earth oxide nanometer powders. The variation of diffraction intensity with atomic Fourier presents infrared (FTIR) spectrums reveal that Ln2O3 nanopowders have higher surface activity than that of ordinary Ln2O3 powders. The UV-vis spectra show that Ln-O bond of these particles is slightly blue-shifted, and its absorption intensity decreases.