论文部分内容阅读
当前,能够实现作物表型参数高效、准确的测量和作物生育期表型参数的动态量化研究是表型研究和育种中亟待解决的问题之一。本研究以棉花为研究对象,采用三维激光扫描LiDAR技术获取棉花植株的多时序点云数据,针对棉花植株主干的几何特性,利用随机抽样一致算法(RANSAC)结合直线模型完成主干提取,并对剩余的点云进行区域增长聚类,实现各叶片的分割;在此基础上,完成植株体积、株高、叶长、叶宽等性状参数的估计。针对多时序棉花激光点云数据,采用匈牙利算法完成相邻时序作物点云数据的对齐、叶片器官对应关系的建立。同时,对