论文部分内容阅读
目前,应用有限差分法或混合有限元格式可计算出弹性波或声波波动方程的完全数值解。然而,在实际应用中还是存在着一些局限性:解释员在算出的时间剖面上分析各种波型以及将它们与网格泓散或边界反射等数值效应分开时都须具备熟练的技巧;而且,即使用高速计算机处理这些程序也是相当费时间的。使用渐近射线族逼近法也可求得弹性动力学运动方程的解,这将是进一步讨论的问题。渐近射线理论的若干方面下面叙述一下这种方法的几个重要特
At present, the complete numerical solution of elastic wave or acoustic wave equation can be calculated by finite difference method or mixed finite element method. However, there are some limitations in practical application: The interpreter must be skilled in analyzing the various wave patterns on the calculated time profile and separating them from numerical effects such as mesh disintegration or boundary reflections; and , It is quite time-consuming to process these programs using high-speed computers. Using the family of asymptotic ray approximations we can also find the solution to the elasto-kinetic equations of motion, which will be a further discussion. Several Aspects of Asymptotic Rays Theory The following are some of the important features of this approach