论文部分内容阅读
针对单样本问题,基于相同类别的人脸变化信息应有相似的稀疏编码这一事实,提出结构化稀疏变化字典学习方法,以得到较好的共享类内变化字典。同时鉴于同一人脸的所有区域应有相同的类标签,通过训练样本与变化字典按坐标分块联合表示查询人脸区域,然后给稀疏系数引入导致结构化稀疏效果的约束条件,实现对应类别字典的自动选择,从而更好地表示查询人脸。提出的人脸表示方法可以在局部识别方法的优势上整合全局信息,使得在AR、Extended Yale B、CMU-PIE人脸库上的表现超过其他单样本识别相关的方法,取得了较好的识