论文部分内容阅读
Re-Os isotopic dating for the molybdenites from the porphyry copper deposits of the Jinshajiang-Red River mineralization belt in Yunnan Province yields isochron ages of 33.9±1.1 Ma for the Machangqing deposit and 34.4±0.5 Ma for the Tongchang deposit. This result shows that both the Machangqing and the Tongchang porphyry Cu-Mo deposits from two different ore-fields formed simultaneously. This new data and the published Re-Os model ages of molybdenite (35.4 Ma, 35.9 Ma, 36.2 Ma) of the Yulong porphyry copper deposit in Tibet, which is located in the same Jinshajiang-Red River mineralization belt as the Machangqing deposit and the Tongchang deposit, suggest that these three Cenozoic porphyry copper deposits in the Jinshajiang-Red River mineralization belt were contemporary for their mineralization episode. That is to say, even their present locality is far away and nearly iso-distantly distributed, these three porphyry Cu(Mo) deposits belong to the same mineralization episode at the end of Eocene.
Re-Os isotopic dating for the molybdenites from the porphyry copper deposits of the Jinshajiang-Red River mineralization belt in Yunnan Province yields isochron ages of 33.9 ± 1.1 Ma for the Machangqing deposit and 34.4 ± 0.5 Ma for the Tongchang deposit. This result shows that This new data and the published Re-Os model ages of molybdenite (35.4 Ma, 35.9 Ma, 36.2 Ma) of the Yulong porphyry copper deposit in Tibet, which is located in the same Jinshajiang-Red River mineralization belt as the Machangqing deposit and the Tongchang deposit, suggest that these three Cenozoic porphyry copper deposits in the Jinshajiang-Red River mineralization belt were contemporary for their mineralization episode. That is to say , even their present locality is far away and nearly iso-distantly distributed, these three porphyry Cu (Mo) deposits belong to the same mineralization episode at the en d of Eocene.