论文部分内容阅读
随着微处理器技术的发展,GPU/CPU的混合计算已经成为是科学计算的主流趋势.本文从编程的层面,介绍了如何利用已有的并行编程语言来,调度GPU的计算功能,主要以MPI(一种消息传递编程模型)与基于GPU的CUDA(统一计算设备架构)编程模型相结合的方式进行GPU集群程序的测试,并分析了CPU/GPU集群并行环境下的运行特点.从分析的特点中总结出GPU集群较优策略,从而为提高CPU/GPU并行程序性能提供科学依据.