论文部分内容阅读
针对传统的直接编码方法对大规模神经网络难以进化的问题,研究者提出了进化神经网络的间接编码方法,这类方法的核心思想是网络子结构的重复可通过一组基因的多次表达来实现从基因型到表现型的映射,这种基因重用机制可在较小的基因空间中进行大规模神经网络的快速搜索.本文在总结和分析各类间接编码实现方法的基础上,给出了进化神经网络间接编码方法的一般性计算框架,每一次神经网络的进化过程分为三个阶段:发育阶段、学习阶段和进化阶段.并从计算框架的基因组进化过程和神经网络发育过程两个方面比较分析了各种典型间接编码方法的优缺点.