论文部分内容阅读
运用LS-DYNA程序中的ALE算法模拟储液容器在不同的跌落角度、跌落高度、壳体厚度下的跌落冲击过程,获取神经网络预测模型的训练样本集;利用BP神经网络建立储液容器结构参数、跌落冲击参数与接触点最大应力之间的映射关系预测模型,并将各种参数下的接触点最大应力网络预测值与仿真值比较,两者差异较小,表明该方法是有效的,可以为实际生产过程中参数选择提供理论依据。