论文部分内容阅读
It is revealed that the dynamic stability of 2-D recursive continuous-discrete systems with interval parameters involves the problem of robust Hurwitz-Schur stability of bivariate polynomials family. It is proved that the Hurwitz-Schur stability of the denominator polynomials of the systems is necessary and sufficient for the asymptotic stability of the 2-D hybrid systems. The 2-D hybrid transformation, i. e. 2-D Laplace-Z transformation, has been proposed to solve the stability analysis of the 2-D continuous-discrete systems, to get the 2-D hybrid transfer functions of the systems. The edge test for the Hurwitz-Schur stability of interval bivariate polynomials is introduced. The Hurwitz-Schur stability of the interval family of 2-D polynomials can be guaranteed by the stability of its finite edge polynomials of the family. An algorithm about the stability test of edge polynomials is given.
It is revealed that the dynamic stability of 2-D recursive continuous-discrete systems with interval parameters involves the problem of robust Hurwitz-Schur stability of bivariate polynomials family. It is proved that the Hurwitz-Schur stability of the denominator polynomials of the systems is necessary and sufficient for the asymptotic stability of the 2-D hybrid systems. The 2-D hybrid transformation, ie 2-D Laplace-Z transformation, has been solved to solve the stability analysis of the 2-D continuous-discrete systems, to get the 2-D hybrid transfer functions of the systems. The edge test for the Hurwitz-Schur stability of interval bivariate polynomials is introduced. The Hurwitz-Schur stability of the interval family of 2-D polynomials can be guaranteed by the stability of its finite edge polynomials of the family. An algorithm about the stability test of edge polynomials is given.