论文部分内容阅读
数据聚类是大数据分析的基本手段,传统聚类方法易于陷入局部最优。针对这一问题,提出一种基于改进引力搜索机制GSA的数据聚类算法。定义一种适合于引力搜索进化的聚类解编码方式。为了衡量不同聚类解的差异,设计一种基于汉明距离的引力搜索粒子距离度量方法,有效衡量数据对象在各维度属性上的不同。同时,在粒子速度更新方面,引入加速因子到粒子速度更新策略中,利用最优粒子位置代表的聚类解加速局部开发过程,加速粒子向最优粒子移动,有效保持局部开发与全局搜索间的平衡。实验结果表明,在经典数据集测试下,该算法在多数测试集中比