论文部分内容阅读
针对使用阈值方法反演云相态存在的不足,本文提出了一种基于Self-Organizing Feature Map(SOFM)神经网络的云相态反演方法。采用覆盖中国地域的Feng Yun-3A/Visible and Inf Rared Radiometer(FY-3A/VIRR)多光谱图像开展了云相态反演实验。实验结果表明:SOFM神经网络方法与K-means方法的结果具有较好的一致性,且SOFM神经网络方法反演云相态的准确性优于FY-3A业务产品。此外,SOFM神经网络方法反演云相态所需时间仅为FY-3A