论文部分内容阅读
读懂教材是有效开展课堂教学的基础和源泉。只有读懂教材,教师才能驾驭教材,才能创造性地使用教材。特级教师朱德江老师曾说过:“读懂教材是教师必备的基本功,读懂教材是使用教材、有效教学的基础。”那么,如何读懂教材呢?笔者经过几年的研究与实践,收到了一些成效,与各位行家共勉。
一、心中有体系——准确把握教学目标
《数学课程标准》安排了四个学习领域,我们应从这几个学习领域出发,整体把握教材,把教材中的知识,放在知识整体中去认识,进行全方位、多角度的分析研究,以便充分认识它在整个知识结构中的地位和作用。因而上一节课,不能单纯地就课论课,而要对小学数学知识脉络有个整体认识,做到心中有体系。
1.从整体入手系统把握知识体系——通读教学目标
要从整体上把握教材,必须清楚地认识教材的体系或知识结构,明确各部分知识的逻辑关系,这就要求我们在整体上要读“通”教材。如《角的认识》分三个阶段:第一阶段:角的元素意义,分别是二年级上册《角和直角》、二年级下册《锐角、钝角》。本阶段的教学目标是:(1)知识与技能:认识角,知道角有一个顶点、两条边,能正确指角、画角,初步感受角的大小与角两边的叉开程度有关;(2)过程与方法:培养学生的观察、对比、动手操作能力和合作交流的意识,发展空间观念;(3)情感态度与价值观:感受角与生活的密切联系,积极参与探索角的活动,从中获得成功的体验。第二阶段:角的结构意义,分别是四年级上册《直线、射线和角》《量角、画角》《平角和周角》。本阶段的教学目标是:(1)知识与技能:进一步认识角,知道角的含义,能用角的符号表示角,感悟角的大小与角两边的叉开程度有关;(2)过程与方法:经历角定义的形成过程,培养学生观察、对比、抽象概括的能力及与同伴合作交流的意识,发展空间观念;(3)情感念度与价值观:在积极参与、探索角的形成过程中,获得成功的学习体验。第三阶段:动态意义和系统意义的教学(初中)。本阶段的教学目标是:(1)知识与技能:进一步认识角,理解角的两种含义,会用角的符号正确表示角;(2)过程与方法:培养学生抽象概括能力,发展空间观念;(3)情感态度与价值观:感受角与生活的密切联系,积极参与、探索角的活动中,获得成功的体验。三个阶段互为基础,互为发展,教学目标分中有合,合中有分。
2.从局部入手具体把握知识体系——细化教学目标
(1)从学生的角度来把握教材体系。奥苏贝尔曾言:影响学习的唯一最重要因素,就是学生已经知道了什么,要探明这一点,并应据此进行教学。因此,在教学中教师要懂得弯下腰来看教材,从儿童的角度出发准确地把握教学目标。如一位老师执教了《三角形的认识》一课后谈到:三角形的概念不重要,不需要教,而高的概念很重要需要重点教。正是老师精心研究学生后发现:得出三角形的概念至少需要花半节课时间,而且对字面上的意思还不能理解,因此不需要重点教,完全可以由教师告诉学生,由此他确定本节课的教学目标是:①在与平行四边形的联系、比较中,认识三角形的特性,知道围成两个三角形的三条线段的长度相同,这两个三角形的形状、大小也相同;了解三角形的稳定性在生活中的实际应用;②掌握三角形高和底的概念,初步掌握画三角形指定底边上的高的技能;③在图形认识过程中培养和发展学生的空间观念。这位老师是这样想的也是这样做的。正是这样,才使我们的孩子不需要一直绕在三角形概念上,可以用更多的时间学习一些更有价值的知识,能有更多的时间动手操作,在联系、比较中去认识三角形的含义及特性。
(2)从生活的角度来把握教材体系。我们的生活实际往往与教材有一定的距离,我们应设法从生活的角度来把握教材,努力在生活实际和教材间铺设桥梁。如《平均分》一课,学生对平均分是有足够的生活经验的,因此在把握本课时应从生活的角度出发,充分利用学生的生活资源展开教学。课一开始老师就直奔主题引出平均分:平均分在生活中经常用到,请你用画图的方法把6个苹果平均分一分。(学生开始动手画,接着反馈)有的学生说3个3个地分,有的学生说2个2个地分,有的学生说1个1个地分……很明显,学生已经初步了解了平均分。正是老师对学生的生活实际有充分理解,从生活的角度把握教材体系,才使学生后来对平均分的含义挖掘得更深。
(3)从教学的角度来把握教材体系。钱金铎老师曾经讲过:我们要关注教材的前后联系,将教材的智力因素充分挖掘,在学习过程中关注思考方法的引导、思想方法的渗透。由此可以看出,把握教材与教学设计有着密切的关系。如《百以内数的认识》,老师认识到学生已经能熟练数100以内的数,为了避免枯燥地数数,教师让学生通过找数活动,说说你怎么找的?让学生学会用多种方法数。你听:请你快速找到62,说说你是怎么找的?学生马上想到62在60的后面,在70的前面。并让全班学生齐数:10、20、30、40、50、60,不知不觉中学生便学会了十个十个地数。教师接着质疑:找到了60,就能找到62,那么从70到60该怎么数?学生便有了一个一个数的机会了:70、69、68、67、66、65、64、63、62。正是老师从教学的角度去把握教材,从而能灵活地重组教材,把资源的价值挖掘到最大的限度。不仅让学生学会知识,培养了数感,更是让学生学会了一种思考方法。
二、眼中有教材——灵活处理教材内容
随着新课程改革的不断推进,充分挖掘教材内容的内涵,“实现数学价值”成为了一项重要目标。因此,教师在实际教学中有必要根据当地条件和学情,把教学内容重新组合、整改、补充,以便灵活处理教材,寻求平衡。
1.把握学生,找准学生学习的起点
朱乐平老师曾说过:“我们想引领学生到我们想让他去的地方,那必须首先知道学生现在到底在哪里。”而每位学生的认知发展水平和已有知识经验既有共性,又有个性,不同班级、不同地区的学生,学习起点也不尽相同,因此数学教学活动必须建立在学生的认知水平和已有知识经验的基础之上。笔者认为,我们可以对学生进行以下几方面的认真分析:学生的认知发展水平怎么样?学生已有的知识经验是什么?掌握的程度怎么样?学生的学习困难在哪里?找准了学生的学习起点,教师方能灵活处理教材,才能真正为学生的课堂服务。
2.吃透教材,使教材知识更适合学生学习
教材是由有着丰富理论知识和实践经验的专家编写出来的,如果我们能将教材所蕴含的深意吃透,将教材本身没有写出来的能力价值挖掘出来,就能很好地促进学生的数学学习活动。如在教学《直线、射线和角》时,老师是这样安排的:由练习引出角,通过观察、说、教师指引,理解数学上“画两条射线”也叫“引出两条射线。”(师用手完整地指了一下角)接着质疑:什么是角?此时角的定义便水到渠成了。原本生硬、难懂的知识学生口中脱口而出,这不能不佩服老师的精心安排,让学生的思维由具体向抽象过渡。但老师对角的概念的教学并不是到此为止,在学生了解了角的概念后,进一步让学生从图形中找其他类型的角,通过画一画、说一说,又使抽象的概念具体化,进一步加深了对角的概念的理解。另外,从课中我还发现老师在让学生说说什么是角前,用手势完整地指了角,这一细致的动作正是老师精心安排的,课后她介绍到:二年级时学生指的角并不是非常完整的,四年级时应加以完善,让学生学会完整地指角。正是因为老师眼中有教材,才使这部分内容体现得活灵活现。
3.调整教材,使教材知识更适合学生发展
教学过程不仅是知识的传输过程,而且是能力的培养过程。平国强老师曾指出:数学课强调数学本质,教学时可以将教材重新组织,删繁就简,去掉不必要的纠缠,使课堂精练有效。因此,作为教师就要灵活利用教材,根据教材的特点及学生的实际情况来处理教材。这样,学生学到的绝不只是书中要求掌握的知识,而是知识与技能、过程与方法、情感态度与价值观的综合发展。
三、手中有策略——有效引领学生学习
《数学课程标准》指出:数学教学应从学生的生活经验和已有知识出发,实施多种策略,创设各种情景,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。因此,教师应合理地利用教学手段和方法,引导学生在真正的活动中学习数学,让学生去真体验、真经历、真操作、真交流,从而获得对数学知识的真知灼见。具体体现在:
1.借助生活原型
《数学课程标准》指出:从学生已有的知识经验出发,让他们亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步与发展。因而,在数学教学中借助生活原型构建数学模型,可以大大促进学生的数学理解,提升课堂教学效益。如《直线、射线和角的认识》,在教学射线时,老师是这样安排的:教师出示手电筒并射向黑板,指出手电筒到黑板这一段光束是线段。接着手电筒光射到幻灯屏幕,让学生模仿说:手电筒到屏幕这一段光束是线段。教师继续问:再射远点呢?(射向对面的墙壁)学生当然会说:手电筒到墙壁这一段光束是线段。此时教师提出:如果没有墙阻挡呢?学生的回答就丰富多彩了,有的说会射向天空,有的说会射向宇宙等等,此时教师指出:这在数学中称为“射线”,同时课件边演示边指出:这一点是手电筒,这一条是光。如果这个屏幕够大的话,会怎么样?学生自然想到会一直穿过去。此时教师指出:这在数学上叫做“无限延伸”。可以看到老师为了让学生深刻体验“射线可以无限延伸”,由生活中手电筒入手,让学生先后三次感悟生活中的线段。起先,我正纳闷:手电筒到某处的光都是生活中的同一种线段。为什么要感悟3次?细细品味,不由地为老师的缜密心思暗暗喝彩。虽说三次都是生活中的同一种线段,但线段的长度由短到长,引起了量的变化,为突破质的变化作好了充足的准备。
2.突出探究型活动
苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”课堂上,我们应紧紧围绕这一点采取一系列的教学策略,有效引领学生展开丰富多彩的探究活动:观察、操作、讨论、发现等等。具体有以下几点:
(1)观察方法的循序引导。数学观察力是新课标中学生应必备的一种重要数学能力。要使这一阶段的培养达到较好的效果,不但要有意识地对学生进行思维方法的训练,更重要的是要把握好时机培养学生的观察能力。如二年级上册《角的初步认识》一课,在练习中老师安排了这样一道连一连:
反馈时教师组织了三次活动:活动一,找找③号画的是剪刀的哪里?并质疑:怎么证明这两个角是一样的?由此解决了重合的思考方法。活动二,找找②号角与数学书的哪个角一样?学生指后用课件指出这个角。教师质疑:怎么证明这两个角一样?学生指出:移动②号角。(课件演示,发现未重合)学生再一次思考,想到将②号角反一下方向后与刚才学生指的数学书上的直角重合。有了上面的启发,学生便毫不费力地指出了数学书上另外三个直角。活动三,找找①号角是扇子的哪个角?说说扇子会怎样?同时拿出活动角让学生感知。三次活动,看似同样的教学流程,蕴含的深意却是迥然不同的。听,老师都是问:几号角画的是谁的哪里呢?乍一听,没觉得有什么,可是细细品味却不难发现三次活动分别是老师对这三种类型的角的巧妙安排,凸显了三个不同的知识层面。通过三次质疑,让学生在指一指、想一想中认识到比较两个角的大小可以通过平移,看是否重合。而活动一是最基础的,通过活动一的学习,学生初步学会了比较角的大小的方法;而在活动二中,学生应用这一方法,使其及时得到巩固,同时认识到只要是同样大小的角,虽然摆放的方向不一致,但角的大小都一样(即所有的直角都一样大,为后面学习直角埋下伏笔)。在活动三中进一步应用了比较角的大小的方法,并利用扇子的特性,让学生认识到角是有大小的,角的大小在外界作用下是可以发生改变的,同时使学生初步感悟到角的大小与两边的叉开程度有关。简简单单的练习蕴含着教师无穷的智慧。
(2)抽象意识的逐步渗透。数学的抽象决定了数学可以培养学习者的抽象能力,也决定了学习者必须具有一定的抽象能力。为此,在课堂教学中我们应让学生经历观察、分析、类比、猜想、归纳、概括等思维活动,培养学生思维的灵活性和深刻性。如《角的初步认识》,在引入时教师安排了这样的活动:老师由学生喜爱的猜一猜活动入手,通过质疑:你是怎么猜的?自然地引出了本课所要学习的知识——角。在让学生数角、指角后,从几何图形中抽象出角,你听“老师把他指的角画下来,想一想会是怎样的?”让学生先在头脑里对角有大致的印象,再通过老师画角来验证,这样,在学生的头脑里逐步建立起了角的表象。
3.丰富教学素材
教育家布鲁纳说过:“学习的最好刺激乃是对所学材料的兴趣,要想使学生上好课,就得千方百计地点燃学生心灵的兴趣之火。”因此,积极提供学生主动地从事观察、实验、猜测、验证、推理与交流等教学素材可以有效提高教学效率。如在《直线、射线和角》这一课中,老师为了帮助学生进步理解直线、射线、线段设计了猜谜游戏。教师先示范说:有始有终,让学生猜猜是哪种线,并说说怎么猜的?接着让学生自己编字谜,说说“射线”“直线”怎么编?短短的一个猜谜游戏,简洁而有意义,学生在想、说的过程中进一步加深了对线段、射线、直线的特征的认识。
总之,知识是基础,方法是中介,思想才是本源。有了思想,知识与方法才能上升为智慧。数学是能够增长学生智慧的学科,我们只有做到心中有体系、眼中有教材、手中有策略,才能发挥数学教育的最大价值,凸显数学本色!
一、心中有体系——准确把握教学目标
《数学课程标准》安排了四个学习领域,我们应从这几个学习领域出发,整体把握教材,把教材中的知识,放在知识整体中去认识,进行全方位、多角度的分析研究,以便充分认识它在整个知识结构中的地位和作用。因而上一节课,不能单纯地就课论课,而要对小学数学知识脉络有个整体认识,做到心中有体系。
1.从整体入手系统把握知识体系——通读教学目标
要从整体上把握教材,必须清楚地认识教材的体系或知识结构,明确各部分知识的逻辑关系,这就要求我们在整体上要读“通”教材。如《角的认识》分三个阶段:第一阶段:角的元素意义,分别是二年级上册《角和直角》、二年级下册《锐角、钝角》。本阶段的教学目标是:(1)知识与技能:认识角,知道角有一个顶点、两条边,能正确指角、画角,初步感受角的大小与角两边的叉开程度有关;(2)过程与方法:培养学生的观察、对比、动手操作能力和合作交流的意识,发展空间观念;(3)情感态度与价值观:感受角与生活的密切联系,积极参与探索角的活动,从中获得成功的体验。第二阶段:角的结构意义,分别是四年级上册《直线、射线和角》《量角、画角》《平角和周角》。本阶段的教学目标是:(1)知识与技能:进一步认识角,知道角的含义,能用角的符号表示角,感悟角的大小与角两边的叉开程度有关;(2)过程与方法:经历角定义的形成过程,培养学生观察、对比、抽象概括的能力及与同伴合作交流的意识,发展空间观念;(3)情感念度与价值观:在积极参与、探索角的形成过程中,获得成功的学习体验。第三阶段:动态意义和系统意义的教学(初中)。本阶段的教学目标是:(1)知识与技能:进一步认识角,理解角的两种含义,会用角的符号正确表示角;(2)过程与方法:培养学生抽象概括能力,发展空间观念;(3)情感态度与价值观:感受角与生活的密切联系,积极参与、探索角的活动中,获得成功的体验。三个阶段互为基础,互为发展,教学目标分中有合,合中有分。
2.从局部入手具体把握知识体系——细化教学目标
(1)从学生的角度来把握教材体系。奥苏贝尔曾言:影响学习的唯一最重要因素,就是学生已经知道了什么,要探明这一点,并应据此进行教学。因此,在教学中教师要懂得弯下腰来看教材,从儿童的角度出发准确地把握教学目标。如一位老师执教了《三角形的认识》一课后谈到:三角形的概念不重要,不需要教,而高的概念很重要需要重点教。正是老师精心研究学生后发现:得出三角形的概念至少需要花半节课时间,而且对字面上的意思还不能理解,因此不需要重点教,完全可以由教师告诉学生,由此他确定本节课的教学目标是:①在与平行四边形的联系、比较中,认识三角形的特性,知道围成两个三角形的三条线段的长度相同,这两个三角形的形状、大小也相同;了解三角形的稳定性在生活中的实际应用;②掌握三角形高和底的概念,初步掌握画三角形指定底边上的高的技能;③在图形认识过程中培养和发展学生的空间观念。这位老师是这样想的也是这样做的。正是这样,才使我们的孩子不需要一直绕在三角形概念上,可以用更多的时间学习一些更有价值的知识,能有更多的时间动手操作,在联系、比较中去认识三角形的含义及特性。
(2)从生活的角度来把握教材体系。我们的生活实际往往与教材有一定的距离,我们应设法从生活的角度来把握教材,努力在生活实际和教材间铺设桥梁。如《平均分》一课,学生对平均分是有足够的生活经验的,因此在把握本课时应从生活的角度出发,充分利用学生的生活资源展开教学。课一开始老师就直奔主题引出平均分:平均分在生活中经常用到,请你用画图的方法把6个苹果平均分一分。(学生开始动手画,接着反馈)有的学生说3个3个地分,有的学生说2个2个地分,有的学生说1个1个地分……很明显,学生已经初步了解了平均分。正是老师对学生的生活实际有充分理解,从生活的角度把握教材体系,才使学生后来对平均分的含义挖掘得更深。
(3)从教学的角度来把握教材体系。钱金铎老师曾经讲过:我们要关注教材的前后联系,将教材的智力因素充分挖掘,在学习过程中关注思考方法的引导、思想方法的渗透。由此可以看出,把握教材与教学设计有着密切的关系。如《百以内数的认识》,老师认识到学生已经能熟练数100以内的数,为了避免枯燥地数数,教师让学生通过找数活动,说说你怎么找的?让学生学会用多种方法数。你听:请你快速找到62,说说你是怎么找的?学生马上想到62在60的后面,在70的前面。并让全班学生齐数:10、20、30、40、50、60,不知不觉中学生便学会了十个十个地数。教师接着质疑:找到了60,就能找到62,那么从70到60该怎么数?学生便有了一个一个数的机会了:70、69、68、67、66、65、64、63、62。正是老师从教学的角度去把握教材,从而能灵活地重组教材,把资源的价值挖掘到最大的限度。不仅让学生学会知识,培养了数感,更是让学生学会了一种思考方法。
二、眼中有教材——灵活处理教材内容
随着新课程改革的不断推进,充分挖掘教材内容的内涵,“实现数学价值”成为了一项重要目标。因此,教师在实际教学中有必要根据当地条件和学情,把教学内容重新组合、整改、补充,以便灵活处理教材,寻求平衡。
1.把握学生,找准学生学习的起点
朱乐平老师曾说过:“我们想引领学生到我们想让他去的地方,那必须首先知道学生现在到底在哪里。”而每位学生的认知发展水平和已有知识经验既有共性,又有个性,不同班级、不同地区的学生,学习起点也不尽相同,因此数学教学活动必须建立在学生的认知水平和已有知识经验的基础之上。笔者认为,我们可以对学生进行以下几方面的认真分析:学生的认知发展水平怎么样?学生已有的知识经验是什么?掌握的程度怎么样?学生的学习困难在哪里?找准了学生的学习起点,教师方能灵活处理教材,才能真正为学生的课堂服务。
2.吃透教材,使教材知识更适合学生学习
教材是由有着丰富理论知识和实践经验的专家编写出来的,如果我们能将教材所蕴含的深意吃透,将教材本身没有写出来的能力价值挖掘出来,就能很好地促进学生的数学学习活动。如在教学《直线、射线和角》时,老师是这样安排的:由练习引出角,通过观察、说、教师指引,理解数学上“画两条射线”也叫“引出两条射线。”(师用手完整地指了一下角)接着质疑:什么是角?此时角的定义便水到渠成了。原本生硬、难懂的知识学生口中脱口而出,这不能不佩服老师的精心安排,让学生的思维由具体向抽象过渡。但老师对角的概念的教学并不是到此为止,在学生了解了角的概念后,进一步让学生从图形中找其他类型的角,通过画一画、说一说,又使抽象的概念具体化,进一步加深了对角的概念的理解。另外,从课中我还发现老师在让学生说说什么是角前,用手势完整地指了角,这一细致的动作正是老师精心安排的,课后她介绍到:二年级时学生指的角并不是非常完整的,四年级时应加以完善,让学生学会完整地指角。正是因为老师眼中有教材,才使这部分内容体现得活灵活现。
3.调整教材,使教材知识更适合学生发展
教学过程不仅是知识的传输过程,而且是能力的培养过程。平国强老师曾指出:数学课强调数学本质,教学时可以将教材重新组织,删繁就简,去掉不必要的纠缠,使课堂精练有效。因此,作为教师就要灵活利用教材,根据教材的特点及学生的实际情况来处理教材。这样,学生学到的绝不只是书中要求掌握的知识,而是知识与技能、过程与方法、情感态度与价值观的综合发展。
三、手中有策略——有效引领学生学习
《数学课程标准》指出:数学教学应从学生的生活经验和已有知识出发,实施多种策略,创设各种情景,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。因此,教师应合理地利用教学手段和方法,引导学生在真正的活动中学习数学,让学生去真体验、真经历、真操作、真交流,从而获得对数学知识的真知灼见。具体体现在:
1.借助生活原型
《数学课程标准》指出:从学生已有的知识经验出发,让他们亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步与发展。因而,在数学教学中借助生活原型构建数学模型,可以大大促进学生的数学理解,提升课堂教学效益。如《直线、射线和角的认识》,在教学射线时,老师是这样安排的:教师出示手电筒并射向黑板,指出手电筒到黑板这一段光束是线段。接着手电筒光射到幻灯屏幕,让学生模仿说:手电筒到屏幕这一段光束是线段。教师继续问:再射远点呢?(射向对面的墙壁)学生当然会说:手电筒到墙壁这一段光束是线段。此时教师提出:如果没有墙阻挡呢?学生的回答就丰富多彩了,有的说会射向天空,有的说会射向宇宙等等,此时教师指出:这在数学中称为“射线”,同时课件边演示边指出:这一点是手电筒,这一条是光。如果这个屏幕够大的话,会怎么样?学生自然想到会一直穿过去。此时教师指出:这在数学上叫做“无限延伸”。可以看到老师为了让学生深刻体验“射线可以无限延伸”,由生活中手电筒入手,让学生先后三次感悟生活中的线段。起先,我正纳闷:手电筒到某处的光都是生活中的同一种线段。为什么要感悟3次?细细品味,不由地为老师的缜密心思暗暗喝彩。虽说三次都是生活中的同一种线段,但线段的长度由短到长,引起了量的变化,为突破质的变化作好了充足的准备。
2.突出探究型活动
苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”课堂上,我们应紧紧围绕这一点采取一系列的教学策略,有效引领学生展开丰富多彩的探究活动:观察、操作、讨论、发现等等。具体有以下几点:
(1)观察方法的循序引导。数学观察力是新课标中学生应必备的一种重要数学能力。要使这一阶段的培养达到较好的效果,不但要有意识地对学生进行思维方法的训练,更重要的是要把握好时机培养学生的观察能力。如二年级上册《角的初步认识》一课,在练习中老师安排了这样一道连一连:
反馈时教师组织了三次活动:活动一,找找③号画的是剪刀的哪里?并质疑:怎么证明这两个角是一样的?由此解决了重合的思考方法。活动二,找找②号角与数学书的哪个角一样?学生指后用课件指出这个角。教师质疑:怎么证明这两个角一样?学生指出:移动②号角。(课件演示,发现未重合)学生再一次思考,想到将②号角反一下方向后与刚才学生指的数学书上的直角重合。有了上面的启发,学生便毫不费力地指出了数学书上另外三个直角。活动三,找找①号角是扇子的哪个角?说说扇子会怎样?同时拿出活动角让学生感知。三次活动,看似同样的教学流程,蕴含的深意却是迥然不同的。听,老师都是问:几号角画的是谁的哪里呢?乍一听,没觉得有什么,可是细细品味却不难发现三次活动分别是老师对这三种类型的角的巧妙安排,凸显了三个不同的知识层面。通过三次质疑,让学生在指一指、想一想中认识到比较两个角的大小可以通过平移,看是否重合。而活动一是最基础的,通过活动一的学习,学生初步学会了比较角的大小的方法;而在活动二中,学生应用这一方法,使其及时得到巩固,同时认识到只要是同样大小的角,虽然摆放的方向不一致,但角的大小都一样(即所有的直角都一样大,为后面学习直角埋下伏笔)。在活动三中进一步应用了比较角的大小的方法,并利用扇子的特性,让学生认识到角是有大小的,角的大小在外界作用下是可以发生改变的,同时使学生初步感悟到角的大小与两边的叉开程度有关。简简单单的练习蕴含着教师无穷的智慧。
(2)抽象意识的逐步渗透。数学的抽象决定了数学可以培养学习者的抽象能力,也决定了学习者必须具有一定的抽象能力。为此,在课堂教学中我们应让学生经历观察、分析、类比、猜想、归纳、概括等思维活动,培养学生思维的灵活性和深刻性。如《角的初步认识》,在引入时教师安排了这样的活动:老师由学生喜爱的猜一猜活动入手,通过质疑:你是怎么猜的?自然地引出了本课所要学习的知识——角。在让学生数角、指角后,从几何图形中抽象出角,你听“老师把他指的角画下来,想一想会是怎样的?”让学生先在头脑里对角有大致的印象,再通过老师画角来验证,这样,在学生的头脑里逐步建立起了角的表象。
3.丰富教学素材
教育家布鲁纳说过:“学习的最好刺激乃是对所学材料的兴趣,要想使学生上好课,就得千方百计地点燃学生心灵的兴趣之火。”因此,积极提供学生主动地从事观察、实验、猜测、验证、推理与交流等教学素材可以有效提高教学效率。如在《直线、射线和角》这一课中,老师为了帮助学生进步理解直线、射线、线段设计了猜谜游戏。教师先示范说:有始有终,让学生猜猜是哪种线,并说说怎么猜的?接着让学生自己编字谜,说说“射线”“直线”怎么编?短短的一个猜谜游戏,简洁而有意义,学生在想、说的过程中进一步加深了对线段、射线、直线的特征的认识。
总之,知识是基础,方法是中介,思想才是本源。有了思想,知识与方法才能上升为智慧。数学是能够增长学生智慧的学科,我们只有做到心中有体系、眼中有教材、手中有策略,才能发挥数学教育的最大价值,凸显数学本色!