论文部分内容阅读
随着高速铁路的快速发展,钢轨裂纹的有效检测对于铁路安全运行具有重要的意义。针对基于漏磁信号的钢轨裂纹识别问题,采用多传感器特征决策融合技术,在对漏磁信号进行了时域和频域的多特征提取与融合的基础上,同时对多传感器信号进行决策融合,设计了一种基于支持向量机(SVM)的多传感器信息融合分类器。利用人工裂纹的实测漏磁信号进行实验,相比于提取单一特征和利用单一传感器信号进行识别,提出的方法取得了更好裂纹识别效果,平均识别率达到98%。