论文部分内容阅读
本文讨论了如下完全三阶两点边值问题{-u(t)=f(t,u(t),u′(t),u″(t)),t∈[0,1], u(0)=u′(0)=u″(1)=0解的存在性,其中f:[0,1]×R^3→R为连续函数.当f(t,x,y,z)满足关于x,y,z超线性增长的不等式条件及f(t,x,y,z)关于z满足Nagumo型增长条件时,本文应用Leray-Schauder不动点定理获得了该问题解的存在性.