论文部分内容阅读
为解决恶意软件行为分析系统中分类准确率较低的问题,提出了一种基于支持向量机(SVM)的恶意软件分类方法。首先人工建立了一个以软件行为结果作为特征的危险行为库;然后捕获软件所有行为,并与危险行为库进行匹配,通过样本转换算法将匹配结果变成适合SVM处理的数据,再利用SVM进行分类。在SVM模型、核函数以及参数对(C,g)的选择方面先进行理论分析确定大致范围,再使用网格搜索和遗传算法(GA)相结合的方式进行寻优。为验证所提恶意软件分类方法的有效性,设计了一个基于SVM模型的恶意软件行为评估系统。实验结果表