论文部分内容阅读
本文研究了一类二阶非线性常微分方程Neumann边值问题{y″+a(t)y=λg(t)f(y),t∈[0,1],y′(0)=y′(1)=0,正解的存在性,其中λ是一个正参数,f在∞处是超线性的且f允许变号.此外与这一问题相关的Green函数可以在某些点等于0.主要结果的证明基于Krasnosel’skii不动点定理.