论文部分内容阅读
针对多传感器故障诊断问题,将神经网络引入主元分析(principal component analysis,PCA)模型之中,提出一基于主元分析的多传感器故障诊断模型。首先,应用传感器正常工作时测量的历史数据,由PCA模型得到所有传感器的预测值。其次,计算传感器系统的平方预期误差值(squared prediction error,SPE),根据系统的SPE值是否跳变,判定有无故障发生。通过分别重构单个传感器信号的SPE值来确定发生故障的传感器。最后,应用一个多传感器故障诊断仿真实例证明了该方案的可行性。