论文部分内容阅读
Electrolytic manganese residue (EMR) is a waste from electrolytic manganese industry that contains high concentration of toxic substances. Since the EMR disposal in landfill sites has a serious environmental impact, new ways of EMR utilization are being sought. Considering the melting of EMR to a glass at high temperature was a relatively less energy-intensive process, EMR was first made into a base glass and then the ground base glass was heat-treated in a certain procedure to make a glass-ceramic and the crystallization process was studied. It was determined by X-ray diffraction (XRD) that the primary crystalline phases of the EMR glass-ceramic were diopside and anorthite, which formed the surface crystallization mechanism with a crystallization activation energy of 429 kJ/mol. Scanning electron microscopy (SEM) observation showed that a layer of small spherical particles with an average size of about 0.5 μm were covered on the glass matrix surface, and among them there were some big particles. The low melting temperature and crystallization activation energy make it promising to reuse EMR for glass-ceramic production.
Electrolytic manganese residue (EMR) is a waste from electrolytic manganese industry that contains high concentrations of toxic substances. Since the EMR disposal in landfill sites has a serious environmental impact, new ways of EMR utilization are being sought. glass at high temperature was a relatively less energy-intensive process, EMR was first made into a base glass and then the ground base glass was heat-treated in a certain procedure to make a glass-ceramic and the crystallization process was studied. It was determined by X-ray diffraction (XRD) that the primary crystalline phases of the EMR glass-ceramic were diopside and anorthite, which formed the surface crystallization mechanism with a crystallization activation energy of 429 kJ / mol. Scanning electron microscopy (SEM) that a layer of small spherical particles with an average size of about 0.5 μm were covered on the glass matrix surface, and among them there were some bi g particles. The low melting temperature and crystallization activation energy make it promising to reuse EMR for glass-ceramic production.