论文部分内容阅读
核函数及其参数的选择决定着核方法的性能.本文基于半监督学习思想,通过构建一个目标函数,利用无标签数据和成对约束信息来优化核函数,使得核函数尽可能适应数据集,从而改善核函数性能.为验证方法的有效性,将其应用于核主成分分析(KPCA)的核函数优化中,在人工数据和UCI数据集上对KPCA提取特征的分类和聚类性能进行评估,实验结果说明提出方法改进了分类和聚类性能.