论文部分内容阅读
摘要:本试验采用电化学氧化法对某制药废水中COD进行了处理,考察了该工艺的COD去除效果及影响因素,并对其工艺参数进行了优化。
关键词:电化学氧化法;作用机理;影响因素
中图分类号:C33 文献标识码:A 文章编号:
1 试验装置
试验用水为制药废水经生化处理后的二沉池出水,COD初始浓度为2500mg/L左右,电解槽为10×10×15cm的有机玻璃槽,阳极板采用钛涂钌氧化电极,阴极采用石墨电极,电源采用电源使用MPS702 直流电源( 最大电压36 V,
最大电流30.7 A),试验装置如图2所示。
图2 试验装置图
2 检测方法
试验中COD浓度的检测采用K2CrO6氧化还原滴定法,采用的仪器为COD微波消解仪。本试验采用单因素理论,通过对其他试验条件的控制,达到对原水COD初始浓度重要性的考察。
3 试验结果与讨论
3.1 初始浓度对COD去除效果的影响
本试验通过原水不同稀释倍时的控制,达到对处理水质COD浓度的有效控制,分别采用稀释0倍(COD浓度2000mg/L)、稀释1倍(COD浓度1000mg/L)、稀释两倍稀释2倍(COD浓度670mg/L)。
试验条件:电流:4A;初始pH:8.0;电解质:0.01mol/L的Na2SO4;极板间距:10cm
试验结果如图3所示:
图3 初始浓度对COD去除效果的影响
图3显示了在不同初始浓度下,溶液中COD浓度与反应时间的变化关系,从中我们可以发现: 45min处为曲线拐点,即为最佳处理时间,出水COD浓度为483.43mg/L,COD去除率为75.75%。通过对试验数据的分析可得:电化学氧化法对COD的去处效果不随初始COD浓度的变化而变化,这是由于电化学电解过程中所产生的氧化剂的量是控制COD氧化速率的决定因素。
3.2 电流密度对COD去除效果的影响
电流密度是影响电化学氧化法反应速度的主要因素,电极表面积恒定时,单位面积提供的电量随电流强度的增大而增大,电化学氧化法反应速度也随之增大[3]。但试验中的电流密度不能无限增大, 当电流密度超过某一电流阈值后, 电路中过量的电子不经过电极反应而直接流进溶液,使电流效率下降[4]。
本试验通过电源电流的恒定控制,达到对试验条件中的电流密度的有效控制,本试验将电流强度先后分别控制在1A、2A、3A、4A、5A、6A。
试验条件:采用制药厂出水作为试验用水(COD浓度为2000mg/L);初始pH:8.0;电解质:0.01mol/L的Na2SO4;处理时间:45min;极板间距:10cm;极板表面积:10cm×10cm。
试验结果如图4所示:
图4 电流密度对COD去除效果的影响
图4中可以发现:试验电流强度从1A逐级上升到4A过程中,原水中COD随电流强度的增大而大幅度地降低,及相应的COD处理效果出现大幅度提高,分析其原因是由于在极板面积一定的情况下,随着电流强度的增大,电子在极板与原水中COD之间的转移速率加快,原水中氧化性极强的H2O2和HO·自由基反应速率也大幅度增加,从而在相同的水力停留时间内所产生的具有氧化作用的活性中间产物越多, 原水中COD的去除效果也明显提高;但在电流强度从4A上升到6A的变化过程中,出水中COD浓度虽有下降,但已接近平衡,COD去除率仅略有提高,分析其原因是电化学氧化法机制受到原水中COD初始浓度的限制。本试验的最佳电流强度为4A。
3.3 初始pH对COD去除效果的影响
本试验将初始pH先后分别控制在2、4、6、8、10、12。
试验条件:采用制药厂出水作为试验用水(COD浓度为2000mg/L);电流强度:4A;电解质:0.01mol/L的Na2SO4;处理时间:45min;极板间距:10cm;极板表面积:10cm×10cm。
试验结果如图5所示:
图5 初始pH对COD去除效果的影响
图5显示了在处理时间45min的条件下,原水中COD处理效果与初始pH的变化关系,从中我们可以发现:在相同的操作条件下,试验pH从2逐级上升到8过程中,出水中COD随pH的增大而大幅度地降低,即相应的COD处理效果出现大幅度提高,分析其原因是由于在间接氧化时阴极生成的H2O2与Fe2+构成Fenton试剂氧化体系,作为OH·的主要来源,而过低的pH对H2O2的产生有明显的抑制作用,不利于OH·的产生[7],随着pH升高,抑制作用得以解除,电化学氧化法机制得以正常进行,COD去除率得到显著提高;但在pH从8上升到12的变化过程中,出水中COD浓度又有显著上升,分析其原因是碱性条件下, 阴极还原析出H2,与Fe3+形成Fe(OH)3沉淀, 体系中Fe2+的再生受到抑制, 对HO·的产生再次造成负面影响,使得COD去除率显著降低,考虑COD去除效果,本试验确定最佳初始pH为8,且在该初始pH下,经45min的电化学氧化法处理后,出水COD浓度为405mg/L,COD去除率为79.75%。
3.4 铁试剂(Fe2+)对COD去除效果的影响
铁试剂(Fe2+)不仅具有催化Fenton 氧化反应的作用, 而且同时可作为絮凝胶团的前体,对COD的去除具有显著影响,铁试剂(Fe2+)的加入使得整个COD去除过程成为电絮凝与电化学氧化作用的耦合体。为考察铁试剂(Fe2+)对电化学氧化法处理效果的影响,本试验采用单因素理论,在其他因素不变的情况下,通过铁试剂(Fe2+)加入前后COD去除效果的对比,达到铁试剂(Fe2+)对电化学氧化法处理效果的验证。
本试验先后控制铁试剂(Fe2+)的有无,达到考察铁试剂(Fe2+)对电化学氧化法处理效果验证的目的。
试验条件:采用制药厂出水作为试验用水(COD浓度为2000mg/L);电流强度:4A;电解质:0.01mol/L的Na2SO4;处理时间:45min;初始pH:10;极板间距:10cm。
试验结果如图6所示:
图5 铁试剂对COD去除效果的影响
图6显示了铁试剂(Fe2+)加入前后,原水中COD处理效果与时间的变化关系,从中可以发现:在相同的操作条件下,铁试剂加入前后,COD处理效果与时间的变化关系保持一致,即在试验开始的0min到45min内,溶液中COD随电化学氧化法处理时间的延长而相应地线性减少;在45min到60min内,溶液中COD随电化学氧化法处理时间的延长而出现COD浓度上升的现象;在60min到90min内,溶液中COD随电化学氧化法处理时间的延长而COD浓度又开始线性减少,45min处为曲线拐点,即为最佳处理时间。分析其原因是由于向原水中投加一定量的铁试剂(Fe2+)后, Fe2+将会与阴极生成的H2O2构成Fenton反应体系,作为OH·的主要来源[10],同时伴随OH·产生的Fe3+相比O2具有较大的初始还原电位,可在阴极上与O2 发生氧化还原反应再生为Fe2+。Fenton氧化体系生成·OH氧化电位可达2.8V,具有很强的氧化能力,·OH作为亲电基团,具有较强的进攻有机污染物的能力,并最終将它们氧化成CO2、H2O以及简单的有机物。
4 试验结论
本试验采用单因素理论,通过对其他相关因素的有效控制,得出的试验结论如下:
1)通过对其他试验条件(初始电压、初始pH、电解质、极板间距)的有效控制,电化学氧化法处理时间45min处为COD去除曲线的拐点,为最佳的处理时间。
2)从考虑到COD去除效果及节约能耗,本试验的最佳电流强度为4A。
3)本试验确定最佳初始pH为8。
4)铁试剂加入前后,COD处理效果与时间的变化关系保持一致,电化学氧化法处理45min处为COD去除曲线的拐点,即为最佳处理时间,即铁试剂(Fe2+)对COD去除效果有一定的促进作用。
参考文献
[1] 肖羽堂,张飞白.电化学氧化技术去除有机物的研究进展[J].江苏化工,2007,35(1):6-10.
[2] 王静,冯玉洁,崔玉虹. 电化学水处理技术的研究应用进展[J].工程与技术,2003,12:19-22.
[3] 王翠,史佩红,等. 电化学氧化法在废水处理中的应用[J].河北工业科技,2004,21(1):49-52.
[4] 施国键,乔俊莲,等. 电化学氧化处理生物难降解有机废水的研究进展[J].化工环保,2009,29(4):326-330.
关键词:电化学氧化法;作用机理;影响因素
中图分类号:C33 文献标识码:A 文章编号:
1 试验装置
试验用水为制药废水经生化处理后的二沉池出水,COD初始浓度为2500mg/L左右,电解槽为10×10×15cm的有机玻璃槽,阳极板采用钛涂钌氧化电极,阴极采用石墨电极,电源采用电源使用MPS702 直流电源( 最大电压36 V,
最大电流30.7 A),试验装置如图2所示。
图2 试验装置图
2 检测方法
试验中COD浓度的检测采用K2CrO6氧化还原滴定法,采用的仪器为COD微波消解仪。本试验采用单因素理论,通过对其他试验条件的控制,达到对原水COD初始浓度重要性的考察。
3 试验结果与讨论
3.1 初始浓度对COD去除效果的影响
本试验通过原水不同稀释倍时的控制,达到对处理水质COD浓度的有效控制,分别采用稀释0倍(COD浓度2000mg/L)、稀释1倍(COD浓度1000mg/L)、稀释两倍稀释2倍(COD浓度670mg/L)。
试验条件:电流:4A;初始pH:8.0;电解质:0.01mol/L的Na2SO4;极板间距:10cm
试验结果如图3所示:
图3 初始浓度对COD去除效果的影响
图3显示了在不同初始浓度下,溶液中COD浓度与反应时间的变化关系,从中我们可以发现: 45min处为曲线拐点,即为最佳处理时间,出水COD浓度为483.43mg/L,COD去除率为75.75%。通过对试验数据的分析可得:电化学氧化法对COD的去处效果不随初始COD浓度的变化而变化,这是由于电化学电解过程中所产生的氧化剂的量是控制COD氧化速率的决定因素。
3.2 电流密度对COD去除效果的影响
电流密度是影响电化学氧化法反应速度的主要因素,电极表面积恒定时,单位面积提供的电量随电流强度的增大而增大,电化学氧化法反应速度也随之增大[3]。但试验中的电流密度不能无限增大, 当电流密度超过某一电流阈值后, 电路中过量的电子不经过电极反应而直接流进溶液,使电流效率下降[4]。
本试验通过电源电流的恒定控制,达到对试验条件中的电流密度的有效控制,本试验将电流强度先后分别控制在1A、2A、3A、4A、5A、6A。
试验条件:采用制药厂出水作为试验用水(COD浓度为2000mg/L);初始pH:8.0;电解质:0.01mol/L的Na2SO4;处理时间:45min;极板间距:10cm;极板表面积:10cm×10cm。
试验结果如图4所示:
图4 电流密度对COD去除效果的影响
图4中可以发现:试验电流强度从1A逐级上升到4A过程中,原水中COD随电流强度的增大而大幅度地降低,及相应的COD处理效果出现大幅度提高,分析其原因是由于在极板面积一定的情况下,随着电流强度的增大,电子在极板与原水中COD之间的转移速率加快,原水中氧化性极强的H2O2和HO·自由基反应速率也大幅度增加,从而在相同的水力停留时间内所产生的具有氧化作用的活性中间产物越多, 原水中COD的去除效果也明显提高;但在电流强度从4A上升到6A的变化过程中,出水中COD浓度虽有下降,但已接近平衡,COD去除率仅略有提高,分析其原因是电化学氧化法机制受到原水中COD初始浓度的限制。本试验的最佳电流强度为4A。
3.3 初始pH对COD去除效果的影响
本试验将初始pH先后分别控制在2、4、6、8、10、12。
试验条件:采用制药厂出水作为试验用水(COD浓度为2000mg/L);电流强度:4A;电解质:0.01mol/L的Na2SO4;处理时间:45min;极板间距:10cm;极板表面积:10cm×10cm。
试验结果如图5所示:
图5 初始pH对COD去除效果的影响
图5显示了在处理时间45min的条件下,原水中COD处理效果与初始pH的变化关系,从中我们可以发现:在相同的操作条件下,试验pH从2逐级上升到8过程中,出水中COD随pH的增大而大幅度地降低,即相应的COD处理效果出现大幅度提高,分析其原因是由于在间接氧化时阴极生成的H2O2与Fe2+构成Fenton试剂氧化体系,作为OH·的主要来源,而过低的pH对H2O2的产生有明显的抑制作用,不利于OH·的产生[7],随着pH升高,抑制作用得以解除,电化学氧化法机制得以正常进行,COD去除率得到显著提高;但在pH从8上升到12的变化过程中,出水中COD浓度又有显著上升,分析其原因是碱性条件下, 阴极还原析出H2,与Fe3+形成Fe(OH)3沉淀, 体系中Fe2+的再生受到抑制, 对HO·的产生再次造成负面影响,使得COD去除率显著降低,考虑COD去除效果,本试验确定最佳初始pH为8,且在该初始pH下,经45min的电化学氧化法处理后,出水COD浓度为405mg/L,COD去除率为79.75%。
3.4 铁试剂(Fe2+)对COD去除效果的影响
铁试剂(Fe2+)不仅具有催化Fenton 氧化反应的作用, 而且同时可作为絮凝胶团的前体,对COD的去除具有显著影响,铁试剂(Fe2+)的加入使得整个COD去除过程成为电絮凝与电化学氧化作用的耦合体。为考察铁试剂(Fe2+)对电化学氧化法处理效果的影响,本试验采用单因素理论,在其他因素不变的情况下,通过铁试剂(Fe2+)加入前后COD去除效果的对比,达到铁试剂(Fe2+)对电化学氧化法处理效果的验证。
本试验先后控制铁试剂(Fe2+)的有无,达到考察铁试剂(Fe2+)对电化学氧化法处理效果验证的目的。
试验条件:采用制药厂出水作为试验用水(COD浓度为2000mg/L);电流强度:4A;电解质:0.01mol/L的Na2SO4;处理时间:45min;初始pH:10;极板间距:10cm。
试验结果如图6所示:
图5 铁试剂对COD去除效果的影响
图6显示了铁试剂(Fe2+)加入前后,原水中COD处理效果与时间的变化关系,从中可以发现:在相同的操作条件下,铁试剂加入前后,COD处理效果与时间的变化关系保持一致,即在试验开始的0min到45min内,溶液中COD随电化学氧化法处理时间的延长而相应地线性减少;在45min到60min内,溶液中COD随电化学氧化法处理时间的延长而出现COD浓度上升的现象;在60min到90min内,溶液中COD随电化学氧化法处理时间的延长而COD浓度又开始线性减少,45min处为曲线拐点,即为最佳处理时间。分析其原因是由于向原水中投加一定量的铁试剂(Fe2+)后, Fe2+将会与阴极生成的H2O2构成Fenton反应体系,作为OH·的主要来源[10],同时伴随OH·产生的Fe3+相比O2具有较大的初始还原电位,可在阴极上与O2 发生氧化还原反应再生为Fe2+。Fenton氧化体系生成·OH氧化电位可达2.8V,具有很强的氧化能力,·OH作为亲电基团,具有较强的进攻有机污染物的能力,并最終将它们氧化成CO2、H2O以及简单的有机物。
4 试验结论
本试验采用单因素理论,通过对其他相关因素的有效控制,得出的试验结论如下:
1)通过对其他试验条件(初始电压、初始pH、电解质、极板间距)的有效控制,电化学氧化法处理时间45min处为COD去除曲线的拐点,为最佳的处理时间。
2)从考虑到COD去除效果及节约能耗,本试验的最佳电流强度为4A。
3)本试验确定最佳初始pH为8。
4)铁试剂加入前后,COD处理效果与时间的变化关系保持一致,电化学氧化法处理45min处为COD去除曲线的拐点,即为最佳处理时间,即铁试剂(Fe2+)对COD去除效果有一定的促进作用。
参考文献
[1] 肖羽堂,张飞白.电化学氧化技术去除有机物的研究进展[J].江苏化工,2007,35(1):6-10.
[2] 王静,冯玉洁,崔玉虹. 电化学水处理技术的研究应用进展[J].工程与技术,2003,12:19-22.
[3] 王翠,史佩红,等. 电化学氧化法在废水处理中的应用[J].河北工业科技,2004,21(1):49-52.
[4] 施国键,乔俊莲,等. 电化学氧化处理生物难降解有机废水的研究进展[J].化工环保,2009,29(4):326-330.