论文部分内容阅读
With the aid of scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), X-ray diffraction(XRD), differential scanning calorimetry(DSC)analysis and electron backscatter diffraction(EBSD), the microstructure of the alloy in as-extruded state and various solution-treated states was investigated. The results indicate that second phase of the as-extruded 7136 aluminum alloy mainly consists of Mg(Zn, Cu, Al)_2and Fe-rich phases. The Mg(Zn, Cu, Al)_2phase directly dissolves into the matrix during solution treatment with various solution temperatures. After solution treated at 475 °C for 1 h,Mg(Zn, Cu, Al)_2phases are dissolved into the matrix,while Fe-rich phases still exist. Fe-rich phases could not dissolve into the matrix by prolonging solution time. The mechanical property test and EBSD observation show that two-stage solution treatment makes no significant improvement in mechanical properties and recrystallization of the alloy. The optimized solution treatment parameter is chosen as 475 °C/1 h.
With the aid of scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC) analysis and electron backscatter diffraction (EBSD), the microstructure of the alloy in as- The results indicate that the second phase of the as-extruded 7136 aluminum alloy mainly consists of Mg (Zn, Cu, Al) 2 and Fe-rich phases. The Mg (Zn, Cu, Al After the solution treated at 475 ° C for 1 h, Mg (Zn, Cu, Al) _2phases are dissolved into the matrix, while Fe-rich phases still exist. Fe -rich phases could not dissolve into the matrix by prolonging solution time. The mechanical property test and EBSD observation show that two-stage solution treatment makes no significant improvement in mechanical properties and recrystallization of the alloy. The optimized solution treatment parameter is chosen as 475 ° C / 1 h.