论文部分内容阅读
燃爆单元宽度(λ)是度量可燃气体燃爆风险的一项重要参数。文中把λ和特征化学反应区厚度(δ)联系起来,以无量纲活化能和无量纲温度为自变量,以λ/δ的对数为因变量对实验数据进行回归。针对传统参数回归方法的不足,采用基于机器学习的高斯过程回归(GPR)方法完成数据拟合工作。通过比较实验数据和拟合函数的预测值,发现GPR方法的结果能够较为准确地预测不同组分的可燃混合气体在不同初始条件下气体的λ。与传统参数回归的结果相比,GPR方法在拟合精度上优于传统参数回归方法。