论文部分内容阅读
针对大面积土地覆盖遥感分类中数据获取难度大、复杂度高、分类结果不够精确且易受季候变化影响等问题,提出了一种利用Landsat时间序列数据,生成年度时序特征,并结合特定算法(UniBagging)进行土地覆盖分类的方法(LandUTime)。该方法定义了一种基于时间序列数据的特征生成方式,根据时序数据特点,设计了一种基于特征子空间的集成分类算法。实现过程分为2个阶段,首先基于特定模型,在像元级别上对Landsat时间序列图像进行回归分析,生成模式特征,然后将所有特征整合成"特征块",根据特征子空间将基