论文部分内容阅读
研究了基于神经网络的中文孤立词语音识别技术;将时间规整算法与神经网络相结合,组成一个混合级联神经网络语音识别系统,在这个模型中,第一级是时间规整神经网络,其作用是完成时间规整功能,从输入不等长的语音信号特征矢量序列中提取固定长度的特征矢量;然后将这组特征矢量馈入后一级BP网络完成语音识别,利用该方法对小词表汉语孤立词进行语音识别实验,获得了98.25%的正确识别率,实验结果表明,该系统不仅利用神经网络解决了语音识别中的时间规整难题,而且识别性能明显得到改善,识别率和训练速度均优于采用线性时间规整的神经网络