论文部分内容阅读
【摘 要】本文以西南交通大学网络教育学院2008~2012年所有学生的学籍数据为研究对象,采用关联、求和、百分比、标准差等多种统计分析方法,系统分析了该学院五年间学生辍学的整体情况和变化趋势,并比较挖掘了多视角下辍学率变化的情况差异和发生规律,揭示了影响远程教育辍学率的多重因素,提出了在学籍管理工作中降低辍学率的对策和注意事项,以期为远程教育的辍学研究提供一个完整的实证案例,为各远程教育院校、学习中心降低辍学率提供相关参考和借鉴。
【关键词】 远程教育;辍学率;保持率;差异比较
【中图分类号】 G642.0 【文献标识码】 B 【文章编号】 1009—458x(2013)08—0062—05
一、引言
辍学率居高不下已成为国际远程教育领域的共性问题之一。世界各国开放大学的招生规模不断扩大,但极高的辍学率给学生、院校和社会带来了较大影响,也困扰着远程教育的发展。
英国开放大学作为世界远程教育的翘楚,目前的毕业率仅为22%,是英国全日制普通高等教育毕业率(82%)的1/4左右,是业余高等教育毕业率(39%)的一半左右;其他远程开放教育院校的毕业率则更低,如印度安姆贝德卡大学为14%、南非大学为6%、加拿大阿萨巴斯卡大学为5.3%、美国的凤凰城大学为5%。[1]
在我国,开展网络高等学历教育的试点高校先后开设了300余种专业、1500多个专业点,设立了9000多个校外学习中心,累计招收网络远程教育本、专科学生1000多万人[2],学生人数位居各类教育形式之首,但也受到高辍学率的困扰。目前,远程教育学生的辍学问题还没有在我国引起充分重视,对辍学者的行为研究和理论模型十分缺乏,甚至很多远程教育院校没有完整的辍学统计数据,更谈不上对辍学问题的分析、研究和干预。
西南交通大学网络教育学院自2001年起作为全国首批网络教育试点高校之一开始招生,截止2012年12月31日,先后共开设了47个专业,设立了59个校外学习中心,累计招收网络本、专科学生十万余人,总体辍学率为8.30%。西南交通大学网络教育学院(以下简称“学院”)的学生分布广泛,影响其辍学的因素复杂多样。在日常学籍管理工作中,学院对所有辍学学生均严格要求办理相关辍学手续,并详细记录了所有辍学者的辍学时间、辍学原因等相关数据。
本研究以学院2008~2012年(共5年)的所有学籍数据为研究对象,对之进行多视角的挖掘分析,以期为远程教育辍学研究提供一个完整的实证案例,为各远程教育院校、学习中心降低辍学率提供相关参考和借鉴。
二、数据样本及研究方法
1. 研究对象及数据来源
本研究利用学院“教务管理数据库”平台,选择2008年春季~2012年秋季(共10个学期)全部学生的学籍数据,共计135670条,建立“2008-2012年学籍状态数据库”,并关联毕业生学历数据表、辍学学生数据表、学习中心数据表、各专业数据表等相关数据,全面分析、挖掘2008~2012年间辍学情况。
2. 数据指标定义
本文中,辍学率=辍学人数/招生注册数。其中,“招生注冊数”指已经完成了学籍注册、获得学号、具有学籍的学生总数,包括在读、已毕业和辍学流失三类学生;“辍学人数”包括辍学、开除、已达最长学习年限但未完成学业而被清退的三类学生数。
3. 数据预处理
(1)将所有辍学学生按照入学时间、学习层次、专业、性别、年龄、学习状态等进行分类、整合,从多视角计算、分析其辍学情况;
(2)对学院先后开设的47个本、专科专业进行归一处理,分为文法类、理工类、经济类三个大类,分别统计其辍学等相关数据;
(3)将所有辍学学生按学习中心所在的行政区划进行分类,共得到27个省(市)/自治区的有效数据,将其再按照地域方位划分为东北、西北、西南、东南、中部共五个区域进行统计;
(4)计算所有已辍学学生“参加过考试的学期数”,得到其有效在读的时间,即“修业时长”,并将该数据进行归类统计;
(5)对专升本辍学学生的统考通过情况进行分类统计。
4. 统计分析方法及研究工具
本研究采用SQL、FOXPRO、EXCEL等数据库软件,对所有数据进行采集、统计,并对数据进行关联、求和、百分比、标准差等计算处理。
三、辍学总体情况
根据统计数据(表1),2008~2012年学院共计招收本、专科学生135670人,目前在读或已毕业人数125768人,辍学人数共9902人,总体辍学率为7.30%。其中,高升专辍学人数6154人、平均辍学率7.28%,专升本辍学人数3748人、平均辍学率7.33%。
我国网络教育学制为2.5年,目前2008~2010年入学的学生已到毕业时间,2011、2012年入学的学生仍处于正常在读年限内。根据2008~2012级各层次辍学率逐年分布图(图1),2008~2012级总体辍学率呈现下降趋势,且各年级专升本辍学率普遍高于高升专辍学率。2008级专升本辍学率达到最高值(11.95%),高于平均辍学率4.65个百分点。
四、辍学率变化趋势及差异比较
学生辍学涉及很多因素,如学习基础和能力、经济状况、环境变化、工作调换、出国、生病、怀孕,等等。但学生在填写“辍学原因”时,往往只简单地填写“自动辍学”或“工作原因”等,由此难以得到学生真实的辍学原因。因此有必要对所有辍学数据进行不同视角的观察和分析。
1. 辍学时间的情况统计
从表2和图2可以看到,辍学时间主要集中在每年的4月和10月,其辍学率分别为15.26%和21.63%。平均月辍学比例的标准差值为0.0579。在每年春、秋季学期,新生入学注册的时间大约是3月和9月,4月和10月为新生入学后的第一个月。 结合已辍学学生参加考试的学期数(图3),可以看出辍学学生的“修业时长”主要集中在前两个学期,其中没有参加任何学习就辍学的学生占辍学总人数的21.94%,为最大值。此后逐渐下降,在第5个学期出现一个小高峰(14%)。已辍学学生参加考试学期数比例的标准差值为0.0806。由此可见,辍学学生主要集中在学习的早期阶段,较有代表性的时间段为新生入学一个月左右的时候及学习时间到达学制2.5年的时候(第5个学期)。
2. 各专业学生的辍学情况
从表3和图4可以看出,专升本学生的辍学率略高于高升专学生;文法类和经济类学生辍学率相对较高,理工类学生辍学率较低。但总体来说,各大类专业学生间的辍学率区别不大,标准差为0.01150。
3. 不同性别、年龄学生的辍学情况
从表4和图5可以看出,女生辍学率的标准差为0.0126,大于男生0.0073的标准差,总体标准差为0.0087。20~46岁的辍学率变化幅度虽然不大,但呈现明显的规律:26岁以前男女生辍学率整体高于26岁以后;21~25岁学生辍学率最高,31~35岁学生辍学率最低;20岁左右的学生,男女生辍学率无明显差别;21~30岁的学生中,女生辍学率高于男生,其中21~25岁的女生辍学率达到9.65%,为所有年龄段学生中最高;26~30岁学生中,男女生辍学率基本一致;30岁以上学生中,男生辍学率高于女生,其中31~35岁学生中,女生辍学率为6%,为所有年龄段学生中最低;46岁以上的学生中,男女生辍学率趋于一致。
4. 不同地区学生的辍学情况
通过对不同学习中心所在行政区域的辍学情况进行统计,共得到27个省(市)/自治区的有效数据。将该数据按照地域方位划分为东北、东南、西北、西南、中部共五个区域,进行进一步归类统计,得到以下数据(表5)。
通过不同学习中心所在地区总体辍学率分布图(图6)可以看出,地处西北地区的学习中心其学生辍学率最高,达到9.25%;其次是东南、中部和西南地区,分别为8.00%、7.25%和6.54%;东北地区辍学率最低,为4.15%。不同地区辍学比例标准差为0.0318。
5. 专升本已辍学学生的统考通过情况
根据教育部和网考委的相关规定,网络教育专升本学生必须通过公共基础课全国统一考试(以下简称“统考”),因此对统考通过情况的统计是分析学生辍学原因的重要依据。從专升本辍学学生统考通过情况的统计(表6、图7)可以看出,专升本学生辍学总人数为3748人,其中仅通过英语统考的人数为170人,占专升本总辍学人数的4.54%;仅通过计算机统考的人数为169人,占专升本总辍学人数的4.51%;两门统考均未通过的人数为3408人,占专升本总辍学人数的90.93%;两门统考均通过却辍学的学生仅1人,占专升本总辍学人数的0.03%。该生为女性,年龄25岁,于2010年秋季入学,机械设计制造及自动化专业,辍学时间为2012年6月,参加过3个学期的期末考试,在读期间共选修16门课程,其中9门课程通过,7门课程均因“缺考”而未通过。经调查了解,该生因工作地点频繁变动而无法继续学习。
五、辍学原因分析及讨论
通过以上对各项辍学数据的统计和分析,以及各类数据的标准差值,可以看到,对辍学情况影响最大的因素为专升本统考的通过情况。网络教育对学生的入学水平没有严格的要求,入学后各门课程的教学、考试标准也由各院校自行把握。然而面对“统考”这一国家统一考试,学生的通过情况则与其入学水平呈正向关联。如何有效提高学生的学习能力和真实水平,是网络教育解决专升本辍学问题的重要因素。
统计结果显示,辍学往往发生在学习的早期阶段,具体时间是入学后第一个学期的一个月内。此外,第一次考试后也是辍学的高发时间段。数据无法体现出其具体原因是什么。但根据日常教务管理经验,笔者推测可能是学生入学后发现学习的难度超过了预期,也可能是第一次考试的通过情况让学生丧失了继续学习的动力。不管何种原因,在此期间于学习支持服务中提供积极指导和早期干预是非常重要的。
不同性别和年龄对学生保持率的影响也不容忽视。在数据统计中,相对年轻的学生更容易辍学。网络教育的学生往往是在职学习的成人学生,工学矛盾十分突出。学生需要有很强的时间管理能力,能合理规划生活、工作和学习的时间,能按部就班地完成每一阶段的学习。网络教育现有的学习支持服务主要是解答问题和满足需求,这类服务的对象是那些已经具有良好“活跃度”的学生,此类学生往往具有较高的保持率。而那些相对“安静”或“冬眠”的学生则需要更多的主动帮助、按时提醒和及时干预。
在我国,地区经济发展水平不均衡,东部经济发展较快,西部经济则相对落后。在日常教务管理工作中,我们经常遇到西部或偏远地区学生因为经济原因而辍学的情况,比如付不起学费、买不起电脑等;另一方面,在东部等经济发达地区,人员流动性较大,很多学生因为工作变动频繁或工作地点不能提供良好的远程学习条件而放弃学习。网络教育可以通过多样化的学习和考试方式,甚至是便携式移动终端来解决学生在时间和空间上的不便;通过贷款等资助方式解决学生的学费问题。
不同专业对学生辍学的影响主要体现在专业间难度不同以及学生入学水平的差异上。部分学生因为选错了专业但又不符合转专业的条件而选择辍学。因此,在入学时学习支持服务人员帮助学生选择适合的专业是降低辍学率的积极做法。另外,帮助基础较差的学生提高学习水平、激发学习兴趣至关重要。网络教育通过提供灵活的课程结构、适中的课业负担、多样的学习方式,能有效提升学生保持率。
当然,无论采取何种措施来降低学生的辍学率,都需要花费院校、学习中心、学习支持服务人员的时间、精力和成本。目前,我国远程教育院校的收入主要来源于学生缴纳的学费。有研究表明,招收一个新生的费用远高于挽回一个辍学者的费用[4]。因此,挽救一个学生的成本会换来数倍的回报,对院校、学习中心甚至学生本人,带来良好的成本-效益。
目前我国远程教育对辍学学生的关注度并不高,降低辍学率的工作任重而道远。各远程教育院校需要不断提升服务水平、完善辍学数据统计;学生则需要保持学习动力、提高学习水平,获得更好的远程学习体验。
[参考文献]
[1] 刘永权,李莹. 破解远程开放教育高辍学率的难题——访英国开放大学奥蒙德·辛普森教授[J]. 开放教育研究,2012,(10).
[2] 孙崇正,安哲峰. 基于网络远程教育的高校创新性人才培养模式改革研究[J]. 现代远距离教育,2011,(2):43-46.
[3] 刘永权,牛健,李莹. 透视国外远程教育降低辍学率的窗口——对英国开放大学扩大参与中心2010年报告的解读[J]. 现代远程教育研究,2011,(6).
[4] 李莹. 远程开放教育辍学研究思考[J]. 中国电化教育,2009,(7).
收稿日期: 2013-04-15
作者简介:周圆,硕士;罗霄,硕士,院长助理;应松宝,博士,教授,院长。西南交通大学网络教育学院(610031)。
责任编辑 石 子
【关键词】 远程教育;辍学率;保持率;差异比较
【中图分类号】 G642.0 【文献标识码】 B 【文章编号】 1009—458x(2013)08—0062—05
一、引言
辍学率居高不下已成为国际远程教育领域的共性问题之一。世界各国开放大学的招生规模不断扩大,但极高的辍学率给学生、院校和社会带来了较大影响,也困扰着远程教育的发展。
英国开放大学作为世界远程教育的翘楚,目前的毕业率仅为22%,是英国全日制普通高等教育毕业率(82%)的1/4左右,是业余高等教育毕业率(39%)的一半左右;其他远程开放教育院校的毕业率则更低,如印度安姆贝德卡大学为14%、南非大学为6%、加拿大阿萨巴斯卡大学为5.3%、美国的凤凰城大学为5%。[1]
在我国,开展网络高等学历教育的试点高校先后开设了300余种专业、1500多个专业点,设立了9000多个校外学习中心,累计招收网络远程教育本、专科学生1000多万人[2],学生人数位居各类教育形式之首,但也受到高辍学率的困扰。目前,远程教育学生的辍学问题还没有在我国引起充分重视,对辍学者的行为研究和理论模型十分缺乏,甚至很多远程教育院校没有完整的辍学统计数据,更谈不上对辍学问题的分析、研究和干预。
西南交通大学网络教育学院自2001年起作为全国首批网络教育试点高校之一开始招生,截止2012年12月31日,先后共开设了47个专业,设立了59个校外学习中心,累计招收网络本、专科学生十万余人,总体辍学率为8.30%。西南交通大学网络教育学院(以下简称“学院”)的学生分布广泛,影响其辍学的因素复杂多样。在日常学籍管理工作中,学院对所有辍学学生均严格要求办理相关辍学手续,并详细记录了所有辍学者的辍学时间、辍学原因等相关数据。
本研究以学院2008~2012年(共5年)的所有学籍数据为研究对象,对之进行多视角的挖掘分析,以期为远程教育辍学研究提供一个完整的实证案例,为各远程教育院校、学习中心降低辍学率提供相关参考和借鉴。
二、数据样本及研究方法
1. 研究对象及数据来源
本研究利用学院“教务管理数据库”平台,选择2008年春季~2012年秋季(共10个学期)全部学生的学籍数据,共计135670条,建立“2008-2012年学籍状态数据库”,并关联毕业生学历数据表、辍学学生数据表、学习中心数据表、各专业数据表等相关数据,全面分析、挖掘2008~2012年间辍学情况。
2. 数据指标定义
本文中,辍学率=辍学人数/招生注册数。其中,“招生注冊数”指已经完成了学籍注册、获得学号、具有学籍的学生总数,包括在读、已毕业和辍学流失三类学生;“辍学人数”包括辍学、开除、已达最长学习年限但未完成学业而被清退的三类学生数。
3. 数据预处理
(1)将所有辍学学生按照入学时间、学习层次、专业、性别、年龄、学习状态等进行分类、整合,从多视角计算、分析其辍学情况;
(2)对学院先后开设的47个本、专科专业进行归一处理,分为文法类、理工类、经济类三个大类,分别统计其辍学等相关数据;
(3)将所有辍学学生按学习中心所在的行政区划进行分类,共得到27个省(市)/自治区的有效数据,将其再按照地域方位划分为东北、西北、西南、东南、中部共五个区域进行统计;
(4)计算所有已辍学学生“参加过考试的学期数”,得到其有效在读的时间,即“修业时长”,并将该数据进行归类统计;
(5)对专升本辍学学生的统考通过情况进行分类统计。
4. 统计分析方法及研究工具
本研究采用SQL、FOXPRO、EXCEL等数据库软件,对所有数据进行采集、统计,并对数据进行关联、求和、百分比、标准差等计算处理。
三、辍学总体情况
根据统计数据(表1),2008~2012年学院共计招收本、专科学生135670人,目前在读或已毕业人数125768人,辍学人数共9902人,总体辍学率为7.30%。其中,高升专辍学人数6154人、平均辍学率7.28%,专升本辍学人数3748人、平均辍学率7.33%。
我国网络教育学制为2.5年,目前2008~2010年入学的学生已到毕业时间,2011、2012年入学的学生仍处于正常在读年限内。根据2008~2012级各层次辍学率逐年分布图(图1),2008~2012级总体辍学率呈现下降趋势,且各年级专升本辍学率普遍高于高升专辍学率。2008级专升本辍学率达到最高值(11.95%),高于平均辍学率4.65个百分点。
四、辍学率变化趋势及差异比较
学生辍学涉及很多因素,如学习基础和能力、经济状况、环境变化、工作调换、出国、生病、怀孕,等等。但学生在填写“辍学原因”时,往往只简单地填写“自动辍学”或“工作原因”等,由此难以得到学生真实的辍学原因。因此有必要对所有辍学数据进行不同视角的观察和分析。
1. 辍学时间的情况统计
从表2和图2可以看到,辍学时间主要集中在每年的4月和10月,其辍学率分别为15.26%和21.63%。平均月辍学比例的标准差值为0.0579。在每年春、秋季学期,新生入学注册的时间大约是3月和9月,4月和10月为新生入学后的第一个月。 结合已辍学学生参加考试的学期数(图3),可以看出辍学学生的“修业时长”主要集中在前两个学期,其中没有参加任何学习就辍学的学生占辍学总人数的21.94%,为最大值。此后逐渐下降,在第5个学期出现一个小高峰(14%)。已辍学学生参加考试学期数比例的标准差值为0.0806。由此可见,辍学学生主要集中在学习的早期阶段,较有代表性的时间段为新生入学一个月左右的时候及学习时间到达学制2.5年的时候(第5个学期)。
2. 各专业学生的辍学情况
从表3和图4可以看出,专升本学生的辍学率略高于高升专学生;文法类和经济类学生辍学率相对较高,理工类学生辍学率较低。但总体来说,各大类专业学生间的辍学率区别不大,标准差为0.01150。
3. 不同性别、年龄学生的辍学情况
从表4和图5可以看出,女生辍学率的标准差为0.0126,大于男生0.0073的标准差,总体标准差为0.0087。20~46岁的辍学率变化幅度虽然不大,但呈现明显的规律:26岁以前男女生辍学率整体高于26岁以后;21~25岁学生辍学率最高,31~35岁学生辍学率最低;20岁左右的学生,男女生辍学率无明显差别;21~30岁的学生中,女生辍学率高于男生,其中21~25岁的女生辍学率达到9.65%,为所有年龄段学生中最高;26~30岁学生中,男女生辍学率基本一致;30岁以上学生中,男生辍学率高于女生,其中31~35岁学生中,女生辍学率为6%,为所有年龄段学生中最低;46岁以上的学生中,男女生辍学率趋于一致。
4. 不同地区学生的辍学情况
通过对不同学习中心所在行政区域的辍学情况进行统计,共得到27个省(市)/自治区的有效数据。将该数据按照地域方位划分为东北、东南、西北、西南、中部共五个区域,进行进一步归类统计,得到以下数据(表5)。
通过不同学习中心所在地区总体辍学率分布图(图6)可以看出,地处西北地区的学习中心其学生辍学率最高,达到9.25%;其次是东南、中部和西南地区,分别为8.00%、7.25%和6.54%;东北地区辍学率最低,为4.15%。不同地区辍学比例标准差为0.0318。
5. 专升本已辍学学生的统考通过情况
根据教育部和网考委的相关规定,网络教育专升本学生必须通过公共基础课全国统一考试(以下简称“统考”),因此对统考通过情况的统计是分析学生辍学原因的重要依据。從专升本辍学学生统考通过情况的统计(表6、图7)可以看出,专升本学生辍学总人数为3748人,其中仅通过英语统考的人数为170人,占专升本总辍学人数的4.54%;仅通过计算机统考的人数为169人,占专升本总辍学人数的4.51%;两门统考均未通过的人数为3408人,占专升本总辍学人数的90.93%;两门统考均通过却辍学的学生仅1人,占专升本总辍学人数的0.03%。该生为女性,年龄25岁,于2010年秋季入学,机械设计制造及自动化专业,辍学时间为2012年6月,参加过3个学期的期末考试,在读期间共选修16门课程,其中9门课程通过,7门课程均因“缺考”而未通过。经调查了解,该生因工作地点频繁变动而无法继续学习。
五、辍学原因分析及讨论
通过以上对各项辍学数据的统计和分析,以及各类数据的标准差值,可以看到,对辍学情况影响最大的因素为专升本统考的通过情况。网络教育对学生的入学水平没有严格的要求,入学后各门课程的教学、考试标准也由各院校自行把握。然而面对“统考”这一国家统一考试,学生的通过情况则与其入学水平呈正向关联。如何有效提高学生的学习能力和真实水平,是网络教育解决专升本辍学问题的重要因素。
统计结果显示,辍学往往发生在学习的早期阶段,具体时间是入学后第一个学期的一个月内。此外,第一次考试后也是辍学的高发时间段。数据无法体现出其具体原因是什么。但根据日常教务管理经验,笔者推测可能是学生入学后发现学习的难度超过了预期,也可能是第一次考试的通过情况让学生丧失了继续学习的动力。不管何种原因,在此期间于学习支持服务中提供积极指导和早期干预是非常重要的。
不同性别和年龄对学生保持率的影响也不容忽视。在数据统计中,相对年轻的学生更容易辍学。网络教育的学生往往是在职学习的成人学生,工学矛盾十分突出。学生需要有很强的时间管理能力,能合理规划生活、工作和学习的时间,能按部就班地完成每一阶段的学习。网络教育现有的学习支持服务主要是解答问题和满足需求,这类服务的对象是那些已经具有良好“活跃度”的学生,此类学生往往具有较高的保持率。而那些相对“安静”或“冬眠”的学生则需要更多的主动帮助、按时提醒和及时干预。
在我国,地区经济发展水平不均衡,东部经济发展较快,西部经济则相对落后。在日常教务管理工作中,我们经常遇到西部或偏远地区学生因为经济原因而辍学的情况,比如付不起学费、买不起电脑等;另一方面,在东部等经济发达地区,人员流动性较大,很多学生因为工作变动频繁或工作地点不能提供良好的远程学习条件而放弃学习。网络教育可以通过多样化的学习和考试方式,甚至是便携式移动终端来解决学生在时间和空间上的不便;通过贷款等资助方式解决学生的学费问题。
不同专业对学生辍学的影响主要体现在专业间难度不同以及学生入学水平的差异上。部分学生因为选错了专业但又不符合转专业的条件而选择辍学。因此,在入学时学习支持服务人员帮助学生选择适合的专业是降低辍学率的积极做法。另外,帮助基础较差的学生提高学习水平、激发学习兴趣至关重要。网络教育通过提供灵活的课程结构、适中的课业负担、多样的学习方式,能有效提升学生保持率。
当然,无论采取何种措施来降低学生的辍学率,都需要花费院校、学习中心、学习支持服务人员的时间、精力和成本。目前,我国远程教育院校的收入主要来源于学生缴纳的学费。有研究表明,招收一个新生的费用远高于挽回一个辍学者的费用[4]。因此,挽救一个学生的成本会换来数倍的回报,对院校、学习中心甚至学生本人,带来良好的成本-效益。
目前我国远程教育对辍学学生的关注度并不高,降低辍学率的工作任重而道远。各远程教育院校需要不断提升服务水平、完善辍学数据统计;学生则需要保持学习动力、提高学习水平,获得更好的远程学习体验。
[参考文献]
[1] 刘永权,李莹. 破解远程开放教育高辍学率的难题——访英国开放大学奥蒙德·辛普森教授[J]. 开放教育研究,2012,(10).
[2] 孙崇正,安哲峰. 基于网络远程教育的高校创新性人才培养模式改革研究[J]. 现代远距离教育,2011,(2):43-46.
[3] 刘永权,牛健,李莹. 透视国外远程教育降低辍学率的窗口——对英国开放大学扩大参与中心2010年报告的解读[J]. 现代远程教育研究,2011,(6).
[4] 李莹. 远程开放教育辍学研究思考[J]. 中国电化教育,2009,(7).
收稿日期: 2013-04-15
作者简介:周圆,硕士;罗霄,硕士,院长助理;应松宝,博士,教授,院长。西南交通大学网络教育学院(610031)。
责任编辑 石 子