论文部分内容阅读
提出一种基于遗传粒子滤波器的运动目标跟踪算法,它将Boosting算法和遗传算法引入粒子滤波器,构建了遗传粒子滤波器.该方法首先利用背景信息和目标信息建立特征分类器,将分类器的输出结果作为粒子滤波系统观测的重要信息,进行粒子权值的计算;并在跟踪过程中不断更新特征分类器,从而自适应地更新粒子的权值.为了提高算法的实时性,将遗传算法引入到粒子滤波器,在保证粒子滤波器精度的前提下,减少粒子数目,从而降低算法的运算时间.实验结果表明,所提算法可以根据背景信息的不同自适应地选择特征,在遮挡、形变及背景干扰等情