论文部分内容阅读
卡尔曼滤波器是线性动态系统中应用最广泛的一种状态估计方法。在非线性系统中,扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)被广泛应用,相比扩展卡尔曼滤波器,无迹卡尔曼滤波器准确度更高、更易于实现。在车辆动力学这种强的非线性系统中,无迹卡尔曼滤波器应用广泛。设计了一种基于无迹卡尔曼滤波器的半主动悬架系统状态观测器,讨论了不准确的过程噪声协方差Q和测量噪声协方差R、及测量信号组合的选择和不准确的模型参数对状态观测精度的影响,仿真结果表明不准确的过程噪声和测量噪声协方差、不合适的测量信号选择和模型参数不准确的