论文部分内容阅读
本文以四阶累积量为特征参数,采用支持向量机(SVM)将分类特征值映射到高维空间中,并构建最优分类超平面,实现对QPSK、16QAM、64QAM和OFDM四种信号的自动调制识别。分析了AWGN信道、Rayleigh衰落信道和Na—kagami衰落信道对四阶累积量的影响,推导并给出了经过衰落信道后四阶累积量的表达式。基于支持向量机的调制识别方法解决了特征样本在低维空间的不可分问题,仿真结果表明,在SNR低于10dB时,该方法的性能明显优于决策树方法,信噪比大于等于0dB时,各种信号的调制识别率在90%以上。