论文部分内容阅读
提出了一种适合于消除高密度椒盐噪声的滤波器。该滤波器充分利用了直方图在受椒盐噪声污染前后形状基本不变的稳健特性。通过计算相邻灰阶直方图的差得直方图梯度,并据此界定噪声范围,确定噪声点。对噪声点,结合图像直方图和图像局部相关的特性,提出了一种新的自适应加权平均算法,是一种新型的噪声判别及噪声滤除算法。该算法可以根据试验需要,采用迭代的方式,达到理想的滤波效果。试验表明,本算法对椒盐噪声特别是高噪声率图像的处理具有很好的性能。相比较现有算法,其去噪声能力大大提升。