论文部分内容阅读
压缩感知(CS)利用图像稀疏表示的先验知识,从少量的观测值中重建出原始图像。将CS理论应用于单幅图像超分辨率(SR),提出一种基于两步迭代收缩算法和全变分(TV)稀疏表示的图像重建方法。该方法无需任何训练集,仅需单幅低分辨率实现图像重建。算法在测量矩阵里加入下采样低通滤波器以使SR问题满足应用CS理论的有限等距性质;采用TV正则化函数,利用两步迭代法引入TV去噪算子,可以更好地重建图像边缘。实验结果证明,与已有的超分辨率方法相比,在不同的放大倍数下所提方法重建图像视觉效果更好,在峰值信噪比(PSNR