论文部分内容阅读
大数据为各种网络服务的用户带来了诸多便利,但也导致了严重的隐私泄露风险。随着5G时代的到来,数据传输更加便捷,隐私保护问题将会面临更为严峻的挑战。目前,中心化差分隐私和以RAPPOR为代表的本地差分隐私技术,可以为隐私信息的查询与收集过程提供一定保护。然而,针对社交网络、商业网络、金融网络这类复杂的图数据,尚缺乏有效的方法,使得在充分保护节点隐私的情况下,收集相关信息,构建可用性高的图结构。在实际应用中,节点之间的关联性以及信息富集等问题造成了在收集与还原图数据方面的困难。针对上述问题,文章提出了一