论文部分内容阅读
中图分类号:G4 文献标识码:A
“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。 那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。
一、了解小学数学教材中蕴涵的主要数学思想方法
数学思想:符号思想,集合思想,对应思想,化归思想。 数学方法: 在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。
二、数形结合
由来已久早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在小学数学教学中,我们虽还用不到这种高深的数学知识,却也在低年级“数的认识”中就接触到了数形结合这个思想。以形助数——借助形的生动和直观来阐明数与数之间的联系,以形为手段,数为目的,比如:运用同数相加的图像来直观地说明乘法的意义。以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质,以数为手段,形为目的,比如:一个特定的数字可以代表任何达到这个数量的事物。(3可以代表达到3这个数量的苹果、衣服、车子……) 数形结合就是根据数学问题的条件与结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起。如果把抽象的数学知识与具体的图形结合起来,挖掘和利用概念中的直观成分,充分利用这种结合,寻找解题思路,就能有效降低教学难度,使问题化难为易,化繁为简,从而得到解决。
三、“数形结合”教学实施情况
数形结合思想是数学的本质之一,是数学教学的精髓,在教学过程中应用广泛,贯穿、融合在课堂教学过程中。我们利用数形结合引进新知,建构概念,解决问题,用数学思想和数学方法去激发学习兴趣,提高数学能力,可为学生以后的学习、工作打下坚实的基础。
1、“数形结合”教学应用
小学生都是从直观、形象的图形开始入门学习数学。具体的事物是出现在抽象的文字、符号之前的,人类慢慢的发展成为用形象的符号记事,最后才有了数字。一年级的小学生学习数学,也是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。例如:中年级学生学习“求比一个数的几倍还多几(少几)”的应用题时,学生对“几倍多几”或“几倍少几”较难理解,为突破这个教学难点,我设计了右面的图形: 结合图形,让学生说:有6个□,△的个数比□的3倍还多4个;也可以说:有6个□,△的个数比□的4倍少2個;接着,出示下面的问题: (1)□有6个,△比□的3倍多4个,△有多少个? 算式:6×3+4=22个 (2)□有6个,△比□的4倍少2个,△有多少个? 算式:6×4-2=22个 比较两题的算法,都要分两步。第一步先求整倍是多少;第二步再加上或减去跟整倍相差的数。这一段教材,一般的教法是:先教求比一个数的几倍多几的数,再教求比一个数的几倍少几的数,最后综合练习。我把这两个相关的内容结合起来一起教,并借助图形的帮助,学生容易理解,比分开教还理解得清楚,学生的思维也更灵活。如自编应用题时,有的学生编了:“皮球的个数比足球的4倍少3个,也就是比足球的3倍多2个,足球有多少个?”这题编得富有创造性,这是用一般教法所不能达到的,如果没有图形的帮助,这样的教学效果也是不可能达到的。
2、以形助数,揭示数量之间的关系,解决大量实际问题。
如果说从图形上抽象出符号,只能代表人们的认知事物的过程,还不能体现其在数学中的独特作用。那么以形助数,善于在图形的分析中快捷地解决问题,思维层次不断上升。这就充分体现了“数形结合”在小学数学中用处了。 数形结合的思想方法将小学数学中一些抽象的代数问题给以形象化的原型,将复杂的代数问题赋予灵活变通的形式,从而给人们思维灵活性的思维迁移训练,这正是反映了数形结合的思想方法解决数与代数问题的有效途径所在。 这方面的例子在小学数学中有很多。从教材上的内容来说:五年级的认识公倍数与公因数就很好的体现了这一点。用长2,宽3的长方形可以铺满边长是6的正方形,而不能铺满边长是8的正方形。从图形拼摆中说明6是2和3的公倍数,而8不是它们的公倍数。
在三四五年级时,学生学习的分数意义、加减法,都用到了数形结合思想。学生通过图形、实物,理解了整体(单位1),理解了分数的意义。这些不仅向学生渗透了数形结合思想,还向学生渗透了类比的思想。
总的来说,教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学。数学思想方法对于学生的学习具有不可替代的作用。
“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。 那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。
一、了解小学数学教材中蕴涵的主要数学思想方法
数学思想:符号思想,集合思想,对应思想,化归思想。 数学方法: 在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。
二、数形结合
由来已久早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在小学数学教学中,我们虽还用不到这种高深的数学知识,却也在低年级“数的认识”中就接触到了数形结合这个思想。以形助数——借助形的生动和直观来阐明数与数之间的联系,以形为手段,数为目的,比如:运用同数相加的图像来直观地说明乘法的意义。以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质,以数为手段,形为目的,比如:一个特定的数字可以代表任何达到这个数量的事物。(3可以代表达到3这个数量的苹果、衣服、车子……) 数形结合就是根据数学问题的条件与结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起。如果把抽象的数学知识与具体的图形结合起来,挖掘和利用概念中的直观成分,充分利用这种结合,寻找解题思路,就能有效降低教学难度,使问题化难为易,化繁为简,从而得到解决。
三、“数形结合”教学实施情况
数形结合思想是数学的本质之一,是数学教学的精髓,在教学过程中应用广泛,贯穿、融合在课堂教学过程中。我们利用数形结合引进新知,建构概念,解决问题,用数学思想和数学方法去激发学习兴趣,提高数学能力,可为学生以后的学习、工作打下坚实的基础。
1、“数形结合”教学应用
小学生都是从直观、形象的图形开始入门学习数学。具体的事物是出现在抽象的文字、符号之前的,人类慢慢的发展成为用形象的符号记事,最后才有了数字。一年级的小学生学习数学,也是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。例如:中年级学生学习“求比一个数的几倍还多几(少几)”的应用题时,学生对“几倍多几”或“几倍少几”较难理解,为突破这个教学难点,我设计了右面的图形: 结合图形,让学生说:有6个□,△的个数比□的3倍还多4个;也可以说:有6个□,△的个数比□的4倍少2個;接着,出示下面的问题: (1)□有6个,△比□的3倍多4个,△有多少个? 算式:6×3+4=22个 (2)□有6个,△比□的4倍少2个,△有多少个? 算式:6×4-2=22个 比较两题的算法,都要分两步。第一步先求整倍是多少;第二步再加上或减去跟整倍相差的数。这一段教材,一般的教法是:先教求比一个数的几倍多几的数,再教求比一个数的几倍少几的数,最后综合练习。我把这两个相关的内容结合起来一起教,并借助图形的帮助,学生容易理解,比分开教还理解得清楚,学生的思维也更灵活。如自编应用题时,有的学生编了:“皮球的个数比足球的4倍少3个,也就是比足球的3倍多2个,足球有多少个?”这题编得富有创造性,这是用一般教法所不能达到的,如果没有图形的帮助,这样的教学效果也是不可能达到的。
2、以形助数,揭示数量之间的关系,解决大量实际问题。
如果说从图形上抽象出符号,只能代表人们的认知事物的过程,还不能体现其在数学中的独特作用。那么以形助数,善于在图形的分析中快捷地解决问题,思维层次不断上升。这就充分体现了“数形结合”在小学数学中用处了。 数形结合的思想方法将小学数学中一些抽象的代数问题给以形象化的原型,将复杂的代数问题赋予灵活变通的形式,从而给人们思维灵活性的思维迁移训练,这正是反映了数形结合的思想方法解决数与代数问题的有效途径所在。 这方面的例子在小学数学中有很多。从教材上的内容来说:五年级的认识公倍数与公因数就很好的体现了这一点。用长2,宽3的长方形可以铺满边长是6的正方形,而不能铺满边长是8的正方形。从图形拼摆中说明6是2和3的公倍数,而8不是它们的公倍数。
在三四五年级时,学生学习的分数意义、加减法,都用到了数形结合思想。学生通过图形、实物,理解了整体(单位1),理解了分数的意义。这些不仅向学生渗透了数形结合思想,还向学生渗透了类比的思想。
总的来说,教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学。数学思想方法对于学生的学习具有不可替代的作用。